
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I lrldyrpt doc

Cl l Sf0
(99.964)

I I I ----
Date August 1995

~ B R A N Z
THE RESOURCE CEMRC FOR BUILDING EXCELLENCE

STUDY REPORT
No. 71 (1995)

OBJECT-ORIENTED GRAPHICAL USER INTERFACE
FOR

HOUSEKEEPING APPLICATIONS

A.H. Dechapunya
R.P. Crisostomo

The work reported here was jointly funded by
the Building Research Levy, and the Foundation for

Research, Science and ~ e c h n o l o g ~ from the
Public Good Science Fund

BUILDlb ':SEARCH
A L . I

14 :!"'I n-,- . ,3
L I t i d ~ t i ~

PRIVATE BAG. PORIRUA. N.2

ISSN: 01 13-3675

PREFACE

The Building Research Association of New Zealand (BRANZ) produced this report to
document its work to datc on sofhvare applications in home automation, and to suggest ways in
which the home automation industry in Ncw Zealand might benefit from further advances in
this field.

ACKNOWLEDGMENTS

The work was jointly funded by the Building Research Levy and the Foundation for Research,
Science and Technology from the Public Good Science Fund.

The authors also wish to acknowledge the contributions made by Dr Wayne Sharman, Dr John
Duncan, and Ian Strawbridge.

READERSHIP

This report is intended for workers in software engineering, home automation, electronics and
nianufacturing in New Zealand.

OBJECT-ORIENTED GRAPHICAL USERS INTERFACE FOR HOUSEKEEPING
APPLICATIONS
BRANZ Study Report SR 71 A H Dechapunya

R.P. Crisostonio

REFERENCE
Dechapunya, A.H. and Crisostomo, R.P. 1995. Object-Oriented Graphical Users Intcrfacc for
Housekeeping Applications. Building Research Association of New Zealand, BRANZ Study
Report SR 71, Judgeford, New Zealand.

KEYWORDS
Appliances, Automatic Controls, Computer Languages, Controls, Home Automation,
Interactivity, Integration, Manual Controls, Object-oriented Programming, Remote Controls,
Security Systems, Sensors, Smart House, Telecommunications, Thermostats, Timcrs.

ABSTRACT
This report describes the design and development of an object-oriented model for the
home automation domain. The model developed will allow the integration of
information and technologies required in the operation of an intelligent home.

Object-oriented technology makes graphical user interface (GUI) programming much
easier. The complexity of GUI codes is already encapsulated in an application
framework. The result is a n increase in productivity.

The design of appliance control and automation is based on the concept of treating each
appliance as a n object. The representation has been realised with powerful object-
oriented programming and real-time interaction between the computer and the home
communications network. The result is an innovative user interface allowing the users
of the system to interact with appliances on the computcr screen.

CONTENTS

1.0 INTRODUCTION

1.1 Background
1.2 Objectives
1.3 Report Design

2.0 METHODOLOGY

Page

1

2.1 Moving from a Menu-based User Interface 2
To a Graphics-based User Interface 2

2.2 Object-oriented Technologies 2

3.0 APPLIANCE CONTROL AND AUTOMATION 3

3.1 Overview 3
3.2 State Transition Design 4
3.3 User Interface 5
3.4 Data Input 10
3.5 Classes For Control and Automation 11
3.6 Discussion 24

4.0 CONCLUSIONS 26

REFERENCES 27

Tablc 1

Table 2

Table 3

Table 4

Table 5

Table 6

Tablc 7

Table 8

Table 9A-9C

Table 10

Table 11

Tablc 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Tablc 22

Table 23

Table 24

Tablc 25

TABLES

Home Communications Network

Units For Modelling Home Automation

State Transition (Event-Action) Diagram

THC's Main Window

Initialisation Dialog

Automation Dialog

Appliance View

Appliance Control Panel

Appliance Control

Class Spccification of PowerlineController

C++ Representation of Class PowerlineController

Class Specification of EventManager

C++ Representation of Class EvcntManager

Class Specification of Event

C++ Representation of Class Event

Class Specification of Event-Log

C++ Representation of Class EventLog

Class Specification of ApplianceAddress

C++ Representation of Class ApplianceAddress

Class Specification of Appliance

C++ Representation of Class Appliance

Class Specification of ApplianceTimcr

C++ Representation of Class ApplianceTimer

Class Specification of ApplianceView

C++ Representation of Class Applianceview

Page

3

3

4

6

6

7

7

8

8-9

12

12

14

14

16

16

17

17

18

18

20

20

2 1

22

23

23

1.0 INTRODUCTION

1.1 Background

This report represents a research output from the study o f object-oriented technology using home
automation as an example o f an application. The project is part o f a BRANZ research programme
dealing with Itriegraied Infornraiion and Advanced Technology. The research programme is
investigating a number o f ways in which advanced technologies can be combined to improve
information and communication technologies used by knowledge industries.

I n this project, software engineering and communication technologies are applied to the home
automation domain, which leads to understanding o f the representation, storage, and retrieval o f
information. See previous reports for an indepth background (Dechapunya, 1992; 1993; 1994).

1.2 Objectives

The programme sets out to identify, adapt and exploit the potential o f advanced technology to
enhance the control o f home environments, with special focus on the disabled, by providing a
structure and platform for modelling, designing and representing physical processes for home
applications and services. The current project consists o f the following objectives and outputs:

applying the object-oriented models developed in 1993-1994 to housekeeping applications by
extending existing classes as well as creating new classes. The principal application wi l l be in the
control and automation o f lights and appliances; and

improving the first stage o f the user interface by developing an object-oriented GUI (graphical
user interface) for home automation applications by re-engineering the user interface from the
DOS environment to a Windows environment. The term re-engineering is used here to indicate
the complete transformation o f the existing user interface.

1.3 Report Design

Section 2 outlines the methodology used in the investigation.

Section 3 describes the main classes for appliance control and automation operations and their
C* implementation, and discusses issues which arose in the investigation.

Section 4 concludes the report

2.0 METHODOLOGY

2.1 Moving from a Menu-based User Interface
to a Graphics-based User Interface

The previous design o f the user interface was menu-oriented and implemented in a DOS
environment. The basic problem with the menu-based user interface is that the users are not in
control o f the applications. This is because a menu-based system only allows users to access the
applications linearly. The interactivity between users and the applications is limited.

A better approach is to access the applications, not from top to bottom, but by any path which users
choose (non-linear access). Users have their own specific ways o f using the applications. They
should be able to go to any option, jump to any other option and get answers any time they require
answers.

Thus, there is a need to move from a DOS, menu, to a Windows, graphical user interface

DOS (Disk Operating System) is by far the most popular operating system for personal computers
(PCs). It, however, does not fit into a new environment o f computing because:

It is a single tasking system. Users need to use a number o f applications at the same time.
Different DOS applications have different user interfaces. There is no standard user interface for
DOS applications.

Microsoft Windows, a Windows graphical environment, has been designed to overcome these DOS
limitations. I t is a multi-tasking system. I t provides a consistent graphical user interface (GUI)
allowing users to easily control the applications. Windows applications share common features in a
user interface. Once users know how to use one application, they w i l l find i t very simple to use other
Windows-based applications. Conventional applications lead the user through the flow o f defined
events. Event-driven applications allow the user to drive the programs through random events.
Windows applications are event-driven programs (Box, 1994; Comaford, 1994; Leinfuss, 1994;
Linthicum, 1994; Rimmer, 1994; Roetzheim; Tetewsky, 1994; Walrath and Hayden, 1994).

Windows has been gaining popularity at a very rapid rate. Most o f the new tools and applications are
implemented in a Windows environment. I t was reported (Tools For Windows, January 1994) that
since the introduction o f Windows 3.1 in July 1992:

More than 30 mil l ion copies o f Windows 3.1 have been sold.
Over 100,000 kits for software developers have been sold.
Companies have been established to provide Windows-based software products,

2.2 Object-Oriented Technologies

The object-oriented technologies used in this work include object-oriented analysis and design, and
object-oriented programming. An object-oriented analysis and design is a set o f guidelines and
frameworks to allow software engineers to develop an application.model. The analysis and design o f
the problem domain is based on Booch's methodology (Dechapunya, 1993). C++ is used as an object-
oriented (00) programming language (Dechapunya, 1993; Mitchell et. al., 1992; Perry, 1993).

3.0 APPLIANCE CONTROL AND AUTOMATION

This chapter begins with an overview o f the concept o f appliance control and automation. I t follows
with a section on the design and modelling o f classes for handling events and their respective actions.
User interfaces are described in Section 3.3. Data requirements for the program are described in
Section 3.4. The essential classes used for appliance control and appliance automation are described
in Sections 3.5. The chapter closes with a discussion section.

3.1 Overview

The infrastructure o f a Total Home Controller (THC) for controlling and automating homes is shown
in Table 1. The basic system consists of:

A standard PC running Windows 3.1 or higher.
A Device driver for the PC interface
A PC interface connecting the PC to the home communications network.
Appliance interfaces connecting appliances to the home communications network.
Application software functioning as the controller and the automator.

Heater Light HVAC PC Lamp T V N C R Water Heater

Table 1: Home Communications Network (Dechapunya, 1994)

Th,: function o f the THC is to control and automate a home. The main tasks and units which are us8:d
to 11erform the appliance control and appliance automation are shown in Table 2.

I Tasks Units I
General management o f THC Main Unit
Control o f appliances and lights Appliancecontrol Unit
Automation o f appliances and lights Automatic Unit

Table 2: Units for Modell ing Home Control and Automation

The present version o f THC i s capable o f both appliance control and appliance automation.
Appliance control is the operation o f appliances when they are subjected to interactive control by
users. User interfaces used in this study include remotes, keyboards, and mouses.

Appliance automation concerns the operation o f appliances when they are subjected to event
structures. A n event structure is essential in home automation applications. I t includes:

Scheduled events - appliances are set to operate at a specific time.
Conditional events - a use o f IF-THEN-ELSE to provide a means o f programming events.
Macro events - a single macro command wi l l start multiple events. For example, a command
"good night" might cause all lights to turn off, lower the thermostat and set a security system.

The combination o f the above events makes a powerful vehicle for providing home services. For
example, an occupancy sensor can be set up to switch on the light in a room if: i t detects movement
and the light switch is o f f and the homeowner is at home. I t will, however, trigger an alarm if the
homeowner is not at home. Another example is, when a sensor detects smoke or fire the system can
be set up to sound an alarm, shutdown I-WAC equipment and phone a fire service.

3.2 State Transition Design

Class Appliance has been extensively re-designed. The previous version o f the Appliance class is
limited in that i t can only handle a single type o f event (e.g. able to have one timer per appliance).
The goal o f the design o f the new Appliance class is to overcome the l imit o f the single timer and
allow users the flexibility to design their own automation events.

Configuration File , Timed Event

Event Display and log

Home User Input
Network I

ApplianceView

Status Request

T a b l e 3: State T rans i t i on (Event-Action) D i a g r a m

I n the new design, as shown in Table 3, a starting point is the class PowerLineController(PIControl).
This class encapsulates al l the function and data o f the PC interface (a device which connects a PC
and a home communication network). Class Aooliance encaosulates all the functions and data o f an . .
appliance. This class no longer contains events o f appliances. Events are now in the EventManager
class. EventManager contains the data and functions required to process and manage al l events. The
processing o f the events includes updating the status o f the appropriate appliance and checking
whether that event is associated with other events. The EventManager allows users to design the
events to automate their homes. The events are recorded in a data file. The data is normally processed
at the beginning o f the system. Class ApplianceView encapsulates all the functions and data to
display the properties o f an appliance. This may be a display o f an icon, an image, an appliance's
status, etc.

To understand how these classes interact together, consider an example. A user presses a remote to
turn on an outside light. The signal from the remote wi l l be detected by PowerLineController. The
control data wi l l be stored as an event. This event wi l l be passed to EventManager. Once received,
EventManager w i l l notify Appliance to update the status o f the appliance object. Appliance w i l l also
notify ApplianceView to update all its displays. When each ApplianceView receives notification, i t
w i l l request Appliance for i ts current status (it is not efficient for Appliance class to pass al l data
about an appliance to an ApplianceView object because not all data is relevant to that ApplianceView

object. I n the meantime, EventManager w i l l check the user's specific events contained in the input
data file to determine whether the current event w i l l trigger other events. Finally, the event w i l l be
recorded in an event log file. Each event w i l l have to go through one cycle o f processing.

Another example is when a user interacts with the system using a mouse or a computer keyboard.
The logical path o f the event processing is:

ApplianceView receives an input;
ApplianceView sends a request to Appliance class;
Appliance class issues a request to PowerLineController to transmit appropriate signals; . Appliance class issues an event to EventManager; and . EventManager class processes the event.

3.3 User Interface

3.3.1 The Concep t

The quality o f the user interface is the key factor in gaining acceptance o f home automation systems
by a more general and non-technical consumer. The user interface must be powerful, easy to use,
friendly, hide the complexity o f the system, and be based on accepted standards. One o f the
underlying principles is to provide a uniform user interface for al l applications. This means that as a
new style o f user interface is designed, i t has to be implemented for other applications (Dechapunya,
1994).

The concept is to visualise an appliance as an object which a user can interact with. When the user
clicks the appliance icon, everything about the appliance wi l l then appear on the screen so that the
user can take control o f the appliance. Accordingly, the user wi l l be able to create an appliance
database containing automatic timed events (on-off-dint-brighr) o f the appliances according to: Year,
Month, Date, Today, Tomorrow, Everyday, Weekdays, Weekends, Hour, Minute.

3.3.2 The Main W i n d o w s

THC's Main Windows (Table 4) have three areas: the Titlebar; the Menubar; and the General space.
The Titlebar contains the name o f the system which is Total Home Controller. The Menubar contains
available menus, which are: Appliance; Security; Energy; Entertainment; Macro; Options; Windows;
and Help. A t present only the Appliance menu has been ful ly implemented, but the infrastructures o f
the other menus are in place. Clicking on the Appliance menu wi l l result i n three menu items (A l l
Lights On, A l l Lights Off, and A l l Units Off).

Clicking on the Options menu wi l l display two items: Configuration, and Permanent Codes. Clicking
on Configuration w i l l allow users to modify the system configuration as shown in Table 5 . This
dialog w i l l ask the user to select a port which the PC interface is connected to, a House configuration
file and an optional Music configuration f i le. This is discussed further in Section 3.4.

Table 4: THC's Main Windows

Table 5: Initialisation Dialog

3.3.3 App l iance A u t o m a t i o n

Tables 6 and 7 show the user interface o f appliance automation and the view o f the appliances. Once
the program starts, the Automatic routine w i l l run continuously. THC behaves like any other
Windows programs in that i t can run in the background; the system is multi-tasking. The system wi l l
continuo~~sly monitor the home communications network even when a user is using other software
applications on the system. The new design o f the PowerlineController and EventManager classes
takes advantages o f this multi-tasking capability, which results in the ability o f the system to handle
all events occurring on every appliance.

.-.-- ~ -

1130/5/95 10:58:43 am: 'Study ~ i o m Hkaier' [K l] i s switched o n n l
113015195 10:58:47 am: 'Study Room Fan' [K31 i s switched on. I 11
113015195 10:58:52 am: eon L i ~ h t ' [~ 5 l ~ i s switched on. I 11
3015195 10:58:54 am: 'Lounge Zighto (~ 7 1 i s switched on. --
. 3 . 0 / ~ 9 ~ O ~ ~ ~ ~ . o m ~ a d l o 2

Table 6: Automation Dialog

ixtetnal Alarm Event Log
lP1 61

0
.ounge Heater Water Heater Washing Outdoor Light Telephone Seculity Light

1K81 (HI] Machine (HZ] (A1 1 Limht (PI 0) P151

I I I
Study Room Study Room Study Room Coffee Wa~me~ Neon Light Lounge Table Lounge Light
Heater (K11 Radio (K21 Fan (K31 lK41 ~ 5 1 Lamp [K6] K71

Table 7: Appliance View

7

3.3.4 Appliance Control

Table 8 shows an earlier design o f appliance control This is basically making use o f the dialog
capability o f Windows. As shown, the panel allows users to interactively control each appliance. The
name, address, and status o f each appliance are displayed. The problem with this design is that
appliance control is the basis o f home automation. A l l appliances connected to the system should be
graphically displayed and accessible at anytime without having to activate any dialog.

The second design o f appliance control, which overcame this problem, is shown in Table 9A. As
shown, all appliances are displayed in the Main Windows. A user can visually assess the state o f an
appliance (on-off, light-appliance, address). A click on an appliance wi l l bring up a menu which
allows control o f that appliance.

Table 8: Appliance Control Panel

External Alarm Event Log

Study Room Study Room Study Room Coffee Walmer Neon Light Lounge Table Lounge Light
Heater (K1 j Radio (K2) Fan (K3) (W [W Lamp [K6] IK71

Table 9A: Appliance Control

8

Tables 9B and 9C illustrate the new design o f appliance control for lights and thermostats
respectively. The only difference between the appliance control and light control is that dim-brighten
is available i n the light control. The thermostat control is quite different from the appliance-light
control. As shown in Table 9C, its function includes Reset, Setback mode, increment, and decrement.

External Alarm
IP161

0
Lounge Healer

[KN

I
Study Room
Heater [Kl]

Event Log

B
Lounge

Thermostat
[Kg]. 20'C.
Normal Mode

I
Study Room
Radio [K2]

0
Water Heater

IH1 I

I
Study Room

Fan [K3]

0
Washing

Machine [HZ]

0
Coffee Warmer

lK41

I Switch Qn
Switch Off b

Lounge Table Lounge Light
Lamp lK61 IK71

Tablc 9B: Appliance Control

. . .

ight Telephone Security Light

Study Room Study Room Coffee Wa~mer Neon Light Lounge Table
Radio [K2] Fan [K3) IK41 (K51 Lamp [K6]

Tablc 9C: Appliance Control

3.4 Data Input

To be able to control and automate an appliance (appliance, light, thermostat), the appliance must
have an address so that the THC can communicate and interact with it. The addressing system used
here is based on the X-10 protocol (Dechapunya, 1992). I n this protocol, an address consists o f two
symbols. The first is a letter (A to P) and the second is a number (I to 16). A typical address is A l .
The addresses o f the appliances are stored in a house configuration file.

A minimum o f hvo data files are required for the operation o f the system: THC.INI and a house
configuration file (e.g. HomeData.Hcf). A music configuration file (e.g. Songs.Mcf) is required if an
entertainment service is needed. THC.IN1 is the system initialisation file. A house configuration fi le
contains data about appliances, addresses, and their schedule o f events. Examples o f THC.IN1 and a
house configuration file are shown below.

THC.INI
[Configuration]
Home=homedata.hcf (a house configuration file)
Music=songs.mcf (a music configuration file)
Port=COM I (use serial port COM I)
[PermanenlX IOCodes]
PanicBunon=PI
ArmAway=P2
ArmHome=P3
Thermostat=P4
MotionSenso~P5
X IOSecurityHouse=P

"Study Room Heater",
"Study Room Radio",
"K2", 10, 0, 10, 15
"Study Room Fan",
"Coffee Warmer",
"Neon Light ",
"K5", 8, 0, 16, 30,

"Lounge Table Lamp",
"Lounge Light",
"K7", 10, 0, 10, 15
"Lounge Heater",
"Lounge Thermostat",
"K9", 22. 0. 23, 59
"K9", 0, 0, 6, 0

"Water Heater",
"HI", 0, 0. 4. 0
"Washing Machine",
"H2", 0, 0, 4, 0

"Outdoor Light".
"Telephone Light"
"Security Light".
"External Alarm",

"KI" (A=appliance; K I =its address)
"K2"

(T=timer; on at 10:OO; off at 10: 15 daily)
"K3"
"K4"
"K5"
Mon Tue Wed Thu Fri (T=timer; on at 08:OO; off at 16:30 Monday

to Friday)
"K6"
"K7"

"HI"

" A l "
"PIO"
"P15"
" P I 6

3.5 Classes For Control and Automation

The following represents the major classes used in the control and automation o f appliances. Their
specifications and C++ representations are described in this section.

PowerLineController
EventManager
Event
EventLog
Appliance
ApplianceTimer
Applianceview

3.5.1 Class PowerL ineCon t ro l l e r

The PowerLineController class provides the communication link between the home network
and the THC. I t encapsulates the functionality o f the hardware device connected to the PC. I t has two
basic responsibilities: to monitor the home network and capture al l events that are received for later
processing by other objects in the THC; and to receive commands from other objects in the THC and
transmit them to the home network.

This class maintains two queues (FIFO) to accomplish these tasks: one for events received and the
other for commands issued by other objects in the THC. These queues are needed because events and
conlmands cannot be processed immediately before the next one comes along. The queues act as
buffers which store the events and commands until they are ready to be processed.

Because this class encapsulates the communications link to the home network, al l the other classes in
the THC do not need to be concerned with the details and complexity o f the communications
protocol needed to receive events and transmit commands.

This class also acts as a translator between the home network and the other objects in the THC. A l l
the data received from the home nehvork is translated into event objects; all commands received
from the other objects are translated into the data bytes expected by the home network. Therefore, i t
is possible to replace the hardware device with another one o f similar functionality and all that needs
to be modified is this class. A l l the other classes are shielded from this because they would still be
dealing with the same events and commands.

This class uses a Windows timer event to carry out its processing. Every 50 milliseconds i t checks
the communications port to see if there is data which needs to be processed. I f there is, the data is
retrieved and processed and possibly added as an event in the event queue. If the home network i s
ready to receive commands, the class looks at the command queue for commands that need to be
transmitted to the home network. I f there is no command to be transmitted or if the home network is
too busy to receive any command, this class translates the data in the event queue into event objects
and puts them into the event queue o f the EventManager class.

Table 10 describes a specification o f Class PowerlineController. Table I I shows an abstract
implementation o f the class using an object-oriented programming language, C++. Full listings o f the
source codes are not available in this report.

Elass Name:
Function:
Attributes:

3perations:

Used by:
Contains:
[nherited by:
Derived from: None

-

PowerLineController
Interface to the home nehvork
devicehandle
currx
RXItems
TXIternS
eventmgr
curappliance
timeoutcount
Isconnected
Connect
Disconnect
On
Off
Bright
Dim
AllUnitsOff
AllLightsOn
AllLightsOff
None
TQueueAsDoubleList, EventManager
None

Table 10: Class Specification of PowerlincController

'/ PLCONTRL. H
'/ Power Line Controller class
' /
:lass PowerLineController (
mblic :

inline BOOL Isconnected0 const;
BOOL Connect(const char *port);
void Disconnect () ;

void On(App1ianceAddress address);
void Off(App1ianceAddress address);
void ~right(App1ianceAddress address);
void Dirn(App1ianceAddress address);
void AllUnitsOff(char housecode);
void AllLightsOn(char housecode);
void AllLightsOff(char housecode) ;

1 ;
Table 11: C++ Representation of Class PowerlincController

3.5.2 Class Even tManager

EventManager is responsible for managing all the events occurring in the home network by:

Logging all events into the event logs;
Updating the status (onloff) o f all Appliance objects defined in the home configuration;
Performing as an automatic timer for all appliances with ApplianceTimers;
Performing security tasks;
Performing housekeeping tasks; and
Performing energy management tasks.

A l l events occurring in the home network pass through this class. This class maintains a queue which
is filled by the PowerLineController class with Event objects. These Event objects are
created by the PowerLineController based on the data i t receives from the home network. The
EventManager class retrieves those Event objects one by one for processing.

This class uses a Windows timer event to process the events in the queue. One event (if the queue is
not empty) is processed for each timer event.

A l l events occurring in the home network are logged into all the event log(s) attached to the
EventManager. This class maintains a set o f EventLog object pointers. Pointers to objects that
are derived from EventLog can then be attached to this set. Examples o f derived event logs are
EventLogFile (logs into a text file) and EventLogWindow (logs into a window).

Each event is processed differently, depending on the type o f event. I f the event is appliance-related,
the status o f that appliance is updated. For example, when an appliance is switched on, the status o f
that appliance is set to 'on'. The appliance, in turn, updates all its views (see Applianceview
classes).

Any appliance may have one or more timers (see ApplianceTimer class) associated with it. The
EventManager class is responsible for checking each timer and switching on the associated
appliance when the timer starts and switching i t o f f when the timer ends.

A l l tasks which should be done based on the occurrence o f event are performed by this class. This is
because al l events pass through this class, so these tasks can be triggered upon the arrival o f the
desired event.

Security tasks are an example o f this. Security-related appliances (motion detectors, door and
window detectors, etc) are monitored when the system is armed. When the events for these devices
are received the THC flashes all lights and sounds a siren.

Housekeeping tasks are also accomplished this way. For example, when the telephone light flashes,
al l radios are switched off. Similarly, Energy management tasks monitor the thermostat appliance
and switch the heater on or off, whichever is appropriate.

Other tasks can be hooked into the EventManager class in similar ways. Any appliance can be
monitored and tasks can be triigered based on events on the appliance.

Table 12 describes a specification o f Class EventManager. Table 13 shows an abstract
implementation o f the class using an object-oriented programming language, C++. Full listings o f the
source codes are not available in this report.

-- -

:lass Name:
'unction:
ittributes:

)perations:

lsed by:
ontains:
iherited by:

EventManager
Processes and dispatches all events
Events
event logs
owner
intruderTimer
intruderTimerCount
securityTimer1
securityTimer2
securityTimerlCount
securityTimer2Count
Start
stop
AddEventLog
RemoveEventLog
OnAllUnitsOff
OnAllLightsOn
OnAllLightsOff
OnApplianceOn
OnApplianceOff
OnLightBright
OnLightDim
ProcessEvent
LogEvent
PowerLineController
Unit, TQueueAsDoubleList, TSetAsVector
None

lerived from: None
Table 12: Class Spccilication of EventManager

/ / EventManager class
class EventManager (
public :

EventManager (Unit *owner) ;
-EventManagerO ;
void Start () ;
void Stop 0 ;
void AddEventLog(EventL0g *eventlog) ;
void RernoveEventLog(EventLog *eventlog) ;
void ~nAllUnitsOff(AllUnitsOffEvent *e);
void OnAllLightsOn(A11LightsOnEvent *e) ;
void ~nAll~ightsOff(~llLightsOffEvent *e) ;
void OnApplianceOn(Appliance0nEvent *el;
void OnApplianceOff(Appliance0ffEvent *el ;
void OnLightBright(LightBrightEvent *e);
void OnLightDim(LightDimEvent *e) ;
void ProcessEvent 0;
void LogEvent(con5t char *eventdesc, TTime time = TTime

1;
I

Table 13: C++ Representation of Class EventManager

14

3.5.3 Classes E v e n t

I The Event classes are a hierarchy o f classes which encapsulate the different types o f events that
occur in the home network. The PowerLineController class receives data bytes from the
communications port and converts them into an object o f the appropriate class derived from the

I Event class. This event object is then placed into the event queue o f the EventManager class.

Events are encapsulated into Event classes in order to hide the details o f the data bytes received

I from the communications port. Thc only class that w i l l need to deal with these details is the
PowerLineController class. A l l the other classes only have to deal with the Event objects and
therefore the complexity o f interpreting the data bytes is hidden from them. This also means that if

I the format or interpretation o f the data bytes is changed in the future, only the
PowerLineController class needs to be changed.

I Here is the Event classes hierarchy:

Event
HouseCommandEvent

AllUnitsOffEvent
AllLightsOnEvent
AllLightsOffEvent

ApplianceCommandEvent
ApplianceOnEvent
ApplianceOffEvent
LightBrightEvent
LightDimEvent

I A l l Event objects have a timestamp o f when they occurred. This is used by the EventManager to
display the date and time o f occurrence in the event logs. Event objects also know how to dispatch

I themselves. Each Event object knows which method o f the EventManager class should process
it, so it passes itself to that method for processing.

I HouseCommandEvent (and al l its derived) objects also have information on the house code where
that event occurred.

I ApplianceCommandEvent (and all its derived) objects also have information on the appliance
address where that event occurred.

I Table 14 describes a specification o f Class Event. Table 15 shows an abstract implementation o f the
class using an object-oriented programming language, C++. Full listings o f the source codes are not
available in this report.

Event
Encapsulate all events from the home network
timestamp
GetTirneStarnp
Dispatch
GetDescription
PowerLineController, EventManager
TTirne
HouseComrnandEvent
AllUnitsOffEvent
~1lLightsonEvent
AllLightsOffEvent
ApplianceCommandEvent
ApplianceOnEvent
ApplianceOffEvent
LightBrightEvent
LightDirnEvent

I Function:
Attributes:
Operations:

Used by:
Contains:
Inherited by:

. Jk

Derived from: None

Table 14: Class Specification of Event

, .
/ / Event class
/ /

-lass Event (
public :

Event(TTirne timestamp) ;
virtual -Event (;

virtual char *Get~escription(char *buf, int buflen, Unit *unit)
const ;

Table 15: C t t Representation of Class Event

3.5.4 Classes EventLog

The E v e n t L o g classes are a hierarchy of classes that are used by the E v e n t M a n a g e r to log all
events occurring in the home network. The E v e n t M a n a g e r maintains a set of EventLog-derived
objects and logs every event to each of them. Currently, two classes are derived from E v e n t L o g :

EventLogWindow - logs events in a window on the screen display.
EventLogFile - logs events to the file "c: \THC\EVENTS .LOGn

The file "C: \THC\EVENTS . LOG" is not purged each time the THC application is run. New logs are
appended to it so it just keeps growing. This is done so that logs of previous runs are not lost. The
user must purge this file occasionally to prevent it from getting too big.

If there is a need for new event logs, a new class can be derived from E v e n t L o g and an object of
this new class can be created and attached to the Even tManager ' s set of E v e n t ~ o g s .

Table 16 describes a specification of Class EventLog. Table 17 shows an abstract implementation of
the class using an object-oriented programming language, C*. Full listings of the source codes are
not available in this report.

Class Name:
Function:
Attributes:
Operations:

1 Used by:
Contains:
Inherited by:

I Derived from:

E v e n t L o g
Record the record log to an output device
eventmgr
S e t E v e n t M a n a g e r
Log
E v e n t M a n a g e r
EventManager
EventLogWindow
E v e n t L o g F i l e
None

Tablel6: Class Specification of EventLog

/ / E v e n t L o g c lass
/ /
class E v e n t L o g (
pub1 i c :

E v e n t L o g () ;
v i r t u a l - E v e n t L o g O ;

void SetEventManager(EventManager ' e v e n t m g r) ;

v i r t u a l void L o g (c o n s t char t e v e n t d e s c) = 0 ;

Table 17: C++ Representation of Class EventLog

3.5.5 Class Appl ianceAddress

This class represents an appliance address which consists o f a house code and a unit code. This
address uniquely identifies each appliance within the home network.

The use o f this class makes i t easier to deal with appliance addresses. Instead o f using house code and
unit code separately or as a string, they are encapsulated as one object.

Table 18 describes a specification o f Class ApplianceAddress. Table 19 shows an abstract
implementation o f the class using an object-oriented programming language, C++. Full listings o f the
source codes are not available in this report.

Class Name: ApplianceAddress
Function: Encapsulates appliance address - house codelunit code pair
Attributes: housecode

unitcode
Operations: GetHouseCode

SetHouseCode
GetUnitCode
SetUnitCode
Getstring

Used by: Appliance, EventManager, Unit
Contains: None
Inherited by: None
Derived from: None

Tablc 18: Class Spccificntion o f ApplianccAddress

/ / APPLADDR.H
/ / Appliance address class
/ /
class ApplianceAddress (
public :

ApplianceAddress(char house, unsigned char unit);
ApplianceAddress(const char faddrstr);

char ~etHouseCode() Const;
void setHouseCode(char house);

unsigned char GetUnitCodeO const;
void SetUnitcode(unsigned char unit) ;

I char *GetString(char faddrstr) const;

int operator == (ApplianceAddress arg) const;
int operator ! = (ApplianceAddress arg) const;

. . .

Tablc 19: Ctt- Representation o f Class ApplianccAddress

3.5.6 Classes Appliance

There are hvo classes that represent appliances:

Appliance - This includes the attributes that describe an appliance, including its address and
name, and the operations to switch an appliance on and off, and to check whether i t is on or off.
LampAppliance - This class inherits from Appliance, so i t has everything an Appliance
has with the addition o f operations to dim and brighten the lamp.

These classes send a command to the PowerLineController class for each o f the operations on
i t (on, off, dim, bright). The PowerLineController queues these commands until the home network is
ready to receive them.

The EventManager class updates the onfoff status o f an Appliance or LampAppliance
object whenever i t receives an appliance onloff event from the PowerLineController class.

Each Appliance maintains a set o f ~pplianceview-derived objects. Whenever its onloff status
is updated i t also informs al l its views to update themselves. A l l appliance views attach themselves to
the appliance they display so they can be updated.

Appliances in the home network are defined in the home configuration file (see section 3 .4) . Each
appliance definition has the following format:

cappliance type,, "cappliance name,", '<appliance address>"

where:

cappliance type> - This i s either A or L for appliance or lamp appliance, respectively.
cappliance name> - This is the descriptive name o f an appliance.
cappliance address> - This consists o f the house code and the unit code o f an appliance.

Table 20 describes a specification o f Class Appliance. Table 21 shows an abstract implementation o f
the class using an object-oriented programming language, C++. Full listings o f the source codes are
not available i n this report.

Class Name:
Function:
Attributes:

3perations:

Jsed by: ,-. ,onrains:
Inherited by:

Appliance
Represents an appliance
name
address
isOn
owner
views
GetName
GetAddress
SetOwner
SwitchOn
SwitchOf f
SetOnStatus
Ison
Ge tType
Dim
Bright
AddView
Removeview
EventManager, PowerLineController, Unit, Applianceview
ApplianceAddress, Unit, TSetAsVector
LampAppliance

Derived from: None

Table 20: Class Specilkation of Appliance

' / Appliance Module classes.
' /
:lass Appliance (
bublic :

Appliance(c0nst char *name, ApplianceAddress address) ;
virtual -Appliance0 ;

:onst char *GerNameO const;
ApplianceAddress GetAddressO Const;
void SetOwner(Unit *owner);
void SwitchOnO;
void Switchoff () ;
void SetOnStatus (int isonl ;
int IsOnO const;
virtual char GetTypeO;
virtual void DimO;
virtual void BrightO;
void AddView(App1ianceView *view);
void ~emoveView(App1ianceView *view);
/ / This is needed so that we can compare two ~ppliance objects
int operator == (const ~ppliance &arg) const;

Table 21: C U Representation of Class Appliance

20

3.5.7 Class App l ianceT imer

This class is used to represent a time range o f when an Appliance should be controlled. This class
consists o f a time range and a pointer to the Appliance object where this timer should be applied.
More than one ApplianceTimer object may be applied to any Appliance.

Objects o f this class are processed by the EventManager class during its processing o f events (as
described in Section 3.5.2).

ApplianceTimers are also defined in the home configuration file (Section 3.4). Each appliance
timer definition has the following format:

T, "cappliance address,", con hour,, con minz, coEE hour,, < o f f mins[, <days>]

where:

T - This means that the line is an appliance timer definition.
cappliance address> - This consists of the house code and a unit code o f an appliance.
con hour, - This i s the hour (0 - 23) when the appliance wi l l be switched on.
con min> -Th is is the minute (0 - 59) when the appliance wi l l be switched on.
<off hour> -Th is is the hour (0 - 23) when the appliance wi l l be switched off.
<off min> - This is the minute (0 - 59) when the appliance wi l l be switched off.
<days> - This is optional and indicates which day(s) o f the week the timer is effective. Any

day(s) o f the week can be specified. I f this i s not present the timer is effective every day.

Table 22 describes a specification o f Class ApplianceTimer. Table 23 shows an abstract
implementation o f the class using an object-oriented programming language, C++. Full listings o f the
source codes are not available in this report.

Class Name: ApplianceTimer
Function: Automated timer for an appliance
Anributes: appliance

onTimeH
onTimeM
off TimeH
off TimeM
dayofweekmap

Operations: IncludeDayOf Week
ExcludeDayOfWeek
ExcludeAllDays
CheckTime

Used by: EventManager
Contains: Appliance
Inherited by: None
Derived from: None

Tablc 22: Class Spccilication o f ApplianccTimcr

I / / APPLTIME . H
/ / Appliance Timer class
/ /

class ApplianceTimer (
public:

ApplianceTimer(App1iance *appliance, int onTimeH, int onTimeM,
int offTimeH, int offTimeM);

void IncludeDayOfWeek(DayTy dayofweek);
void ExcludeDayOfWeek(DayTy dayofweek);
void ExcludeAllDays () ;

I void CheckTime(int hour, int minute, DayTy dayofweek);

I int operator == (const ApplianceTimer &arg) const;

Table 23: C++ Representation of Class ApplianceTimer

3.5.8 Classes App l ianceV iew

These classes are used to provide a visual display o f an ~ppliance's status. They are also used to
allow the user to operate or manipulate an Appliance. Each ApplianceView visually represents
exactly one Appliance object. However, each Appliance may have any number of
Applianceviews.

Whenever the user issues a command to an ApplianceView, the ApplianceView calls the
appropriate member function in the Appliance object i t represents.

Currently, there is only one class derived from Applianceview. This is the Appliancewindow
class. This class displays a graphic icon on the screen which visually illustrates the status o f the
appliance. When the user clicks on the icon with a mouse, a popup menu is displayed, giving the user
some options to operate on that appliance.

New classes may be derived from ApplianceView to visually represent an appliance in different
ways.

Table 24 describes a specification o f Class ApplianceView. Table 25 shows an abstract
implementation o f the class using an object-oriented programming language. C++. Ful l listings o f the
source codes are not available in this report.

Class Name: ApplianceView
Function: Visual representation of an appliance
Attributes: appliance
Operations: GetAppliance

SetAppliance
Update

Used by: Appliance
Contains: Appliance
Inherited by: Appliancewindow
Derived from: None

Tablc 24: Class Specification of ApplianceView

/ / APPLV1EW.H
/ / Appliance View base class
/ /

class ApplianceView (
public :

ApplianceView(App1iance +appliance);
virtual -ApplianceViewO;

Appliance +GetApplianceO const;
virtual void Set~ppliance(App1iance *appliance);

I virtual void Update 0 = 0;

Tablc 25: C++ Representation of Class ApplianceVicw

3.6 Discussion

3.6.1 M i c r o s o f t W i n d o w s

Using a graphical user interface (GUI) like Microsoft Windows makes any system easier to learn and
use. In a home automation system, a GUI is even more beneficial because the home and its
appliances are best represented on the screen as graphical objects that can be manipulated by the
user. Displaying appliances this way makes i t obvious what they are and the state they are in (on, off,
etc.). A pointing device such as a mouse allows easy navigation through the system. By simply
pointing on an appliance icon and clicking on it, a menu o f allowable functions for that appliance is
displayed.

The ability to do background processing (or pre-emptive multi-tasking) in applications is not directly
supported in Windows 3.1 1. This has been achieved using timer events. They, however, are not
entirely reliable because timer events are low priority messages which wi l l not be processed if the
system is busy doing some other tasks. Because o f this i t i s possible that the THC application may
not be able to monitor some events if another application running on the same PC goes into a tight
loop for a long period o f time. I n future versions o f Windows, this problem wi l l be solved because o f
its direct support for pre-emptive mul-titasking.

3.6.2 Objec t -Or ienta t ion a n d C U

The use o f object-oriented techniques in the design and development o f the THC greatly eased
development and further evolution o f the system.

The system was developed in C++ (Borland C++ User's Guide, 1993; Borland C++ Programmer's
Guide, 1993). arguably the most widely used object-oriented language. Because o f its popularity,
there are many development tools available for it, most important o f these being class libraries, also
known as applicafion framework. As the name suggests, class libraries are a library o f reusable and
extendable classes ready to be used for the development o f applications.

Each class library has an area o f specialisation or domain. I n the development o f the THC, a class
library specialising in the Windows user interface elements was used. Object Windows Library
(OWL) is a rich set o f classes for creating Windows interface elements (Borland Objectwindows for
Ctc, 1993). The use o f a class library means that the developers can focus more on the application
part o f the work instead o f on the programming o f the user interface. Previously, in this sort o f
development, the developers have to spend much time in the details o f the low-level programming o f
the user interface, which is quite complex. Now, with a class library, time is not spent in the details
o f Windows programming and developments have concentrated on the home automation aspects o f
the application.

Initially, the programme was written using an BRANZ-developed application framework known as
RRView. This was because at the time o f the initial developnlent, the application frameworks which
came with Borland C U programming language were still in their early versions and did not provide
a good environment for the GUI development. However, with Borland C++ 4.0, its application
framework, OWL, is much improved and provides a good framework for building Windows
programs.

The conversion from RRView to O W L did not create any problem due to the object-oriented nature
o f both RRView and OWL. The use o f O W L confirmed that it was much improved. O W L 2.0
contains more classes than O W L 1.0, i.e. i t encapsulates many more applications programming
interfaces (API). Thus, developers have access to more standard classes.

Another area which benefited from object-oriented techniques is program evolution. A system
designed and developed using object-oriented techniques is more easily maintained and extended.
The concept o f encapsulation protects a class from being affected by changes in other parts o f the
application. The concept o f inheritance allows the developer to add new classes in a way that reuses
the functionality o f the inherited class. Lastly, polyniorphism allows different derived classes to
perform their own special behaviour without the user o f the class being concerned with the details.

3.6.3 H o m e Commun ica t ions N c h v o r k

A t present the home communication network is based on the X-10 technology (Dechapunya, 1992).
One o f the problems is that i t does not yet provide full two-way communication. Standard modules
such as a lamp module only receive signals and do not transmit them. This is satisfactory as long as
users use remote or any X-10 controllers or PCs to control/automate their homes. The manual
operation (local control) o f these modules wi l l not transmit X-10 signals. Thus, EventManager w i l l
not be able to process the event.

The present design has evolved using one PC interface as both transmitter and receiver. The system
may improve if two PC interfaces are used, one to transmit and one to receive.

The hardware device currently used to interface with the home network has a limitation. When it is
swamped with events from transmitter(s) in the home network (e.g. a flashing light), it does not
become available for transmitting commands until all the events have been received. In this situation,
this class is unable to transmit any pending commands, rendering the THC application in a
"disabled" state. One solution to this problem is to have separate devices for transmitting and
receiving. A better solution would be to use a device that can support concurrent two-way
communication with the home network (full duplex).

Another limitation is the use o f a Windows timer to process events in the background. The Windows
tinier event i s a low priority message that may not be sent when the system is busy processing in
some other application, or even in other parts o f the THC. This w i l l result in the communications port
not being able to be checked for an extended period o f time, resulting in loss o f data. The solution to
this is to have a more reliable alternative to background processing. A n example o f this is a Windows
Virtual Device Driver (VDD), which is interrupt driven and runs at a higher priority than Windows
applications. However, VDD's are difficult to write because they have to be written in assembly
language and require intimate knowledge o f the hardware and Windows system level programming.

3.6.4 User In ter face

The second design o f user interface for appliance control is very successful in terms o f being user
friendly. The representation o f appliances as active objects makes the appliances available to the
users at any time. The results have showed the differences between dialog-based appliance control
and the object-based appliance control.

The design o f the dialog-based appliance control is based on the dialog structure o f the Windows
architecture. This is a normal method o f utilising a Windows environment. The design o f object-
based appliance control is based on the concept o f treating each appliance as an object. Each object
represents an actual appliance. The representation has been realised with the powerful object-oriented
programming and real-time interaction between the computer and the home communications
network. I n summary, object-oriented methodology has been extended to represent real automated
objects.

3.6.5 App l iance Control

The THC is designed so that all appliances are always accessible to the user. Visually, all appliances
are displayed on the screen in such a way that their status is obvious. The user can readily control and
operate any appliance at the click o f the mouse. This makes the system very easy to learn and use.

The THC appliance control is designed to monitor the home network at startup and to continue to do
so while the system is running. This allows the system to keep track o f the state o f all appliances and
display them appropriately. This is very important because the appliances can also be operated
outside the PC, using other devices (e.g. hand-held remotes). Aside from this, some security-related
appliances (e.g. motion detectors) can transmit signals to the home network at any time, and the
system needs to react to these signals immediately by performing security-related tasks.

The system needs to be informed o f these operations and signals so that i t can update the display o f
al l appliances and to perform tasks which are based on the occurrence o f these operations and signals.

The home network is monitored in the background so that the user can still use the system without
interfering with the monitoring process.

4.0 CONCLUSIONS

The home automation models, and software classes, developed in 1993-1994 have been extended to
housekeeping applications. These applications are mainly the control and automation o f lights and
appliances.

Object-oriented technology (00 nlethodology, 00 programming language, and applications
framework) contains a rich environment that makes developing Windows applications less complex.
The complexity o f G U I codes is encapsulated in an application framework. The result i s an increase
in productivity.

The re-engineering o f the user interface has been completed. The user interface i s now changed from
a DOS, menu-based environment to a Windows, Graphical User Interface environment. The new user
interface provides a much better environment than the previous DOS menu environment. Users are
now in control o f the applications. The new design means that all appliances are always accessible to
the user. The user can readily control and operate any appliance at the click o f a mouse. This makes
the system very easy to learn and use.

The design o f the appliance control and automation i s based on the concept o f treating each appliance
as an object. Each object represents an actual appliance. The representation has been realised with
powerful object-oriented programming and real-time interaction between the computer and the home
communications network. The result is an innovative user interface allowing the users o f the system
to interact with appliances on the screen.

REFERENCES
Borland C++ ~ s d s Guide, 1993. Borland International, Inc., Scotts Valley, CA.

Borland C++ Programmer's Guide. 1993. Borland International, Inc., Scotts Valley, CA

Borland ObjectWindows for C++, 1993. Borland International, Inc., Scotts Valley, CA.

Box, D., 1994. Starting Windows. C++ Report,Vol6, No 5, June 1994, pp. 53-58.

Comaford, C., 1994. A Guide to Controls and Window Types. PC Magazine, May 3 I, 1994, pp. 299-
304.

Dechapunya, A.H., 1992. Standards For Communications Networks In The Home. Building
Research Association o f New Zealand, Miscellaneous Report, Judgeford, New Zealand.

Dechapunya, A.H., 1993. Object-Oriented Methodology for Home Automation Applications.
Building Research Association o f New Zealand, B R A N Z Study Report SR52, Judgeford, New
Zealand.

Dechapunya, A.H., 1994. Object-Oriented Programming for Home Automation Applications.
Building Research Association of New Zealand, BRANZ Study Report SR56, Judgeford, New
Zealand.

Leinfuss, E., 1994. GUls Reap Productivity Rewards. Computerworld New Zealand, February 14,
1994, pp. 19-23.

Linthicum, D.S., 1994. Life After DOS. PC Magazine, May 3 1, 1994, pp. 203-237

Mitchell, E., Becker, P., Dlugosz, J., Finnell-Fruth, C., Free, G., Fruth, R., Herring, B.D., and
Schulmeisters, K., 1992. Secrets o f the Borland C++ MastersSAMMS Publishing Carmel, Indiana
46032 USA, pp. 730.

Perry J. P., 1993. Your Borland C++ Consultant SAMS Publishing Carmel, Indiana 46032 USA. pp.
449.

Rimmer, S., 1994. Multimedia Programming for Windows. WindcrestlMcGraw-Hill, New York, pp.
370.

Roetzheim, W., 1992. Programming Windows With Borland C++. Ziff-Davis Press, Emeryville,
California, pp. 464.

Tetewsky, A.K., 1994. GUI Development for Real-Time Applications. Dr. Dobb's Journal, June
1994, pp. 28-41,

Walrath, K. and Hayden, R., 1994. The Philosophy of Designing a GUI. Object Magazine, July-
August 1994, pp. 28-44.

Object-oriented graphical user interface for
housekeeping applications.

1 DECHAPUNYA, A.H ; CRISOSTOMO, R.P.
I

Aug 1995 33786

I I

THE RESOURCE CENTRE FOR BUILDING UCELLENCE

BRANZ MISSION

To be the leading resource for the
development of the building and

construction industry.

HEAD OFFICE AND
RESEARCH CENTRE

Moonshine Road, Judgeford
Postal Address - Private Bag 50908, Porima

Telephone - (04) 235-7600, FAX - (04) 235-6070

REGIONAL ADVISORY OFFICES

AUCKLAND
Telephone - (09) 524-7018

FAX - (09) 524-7069
118 Carlton Gore Road, Newmarket

PO Box 99-186, Newmarket

WELLINGTON
Telephone - (04) 235-7600

FAX - (04) 235-6070
Moonshine Road, Judgeford

CHRISTCHURCH
Telephone - (03) 366-3435

FAX - (03) 366-8552
GRE Building

79-83 Hereford Street
PO Box 496

