
CllSfB
81 1(99.964)1 I
Date August 1994

STUDY REPORT
NO. 56 (1994)

REPORT ON OBJECT-ORIENTED
PROGRAMMING FOR HOME

AUTOMATION APPLICATIONS

A.H. Dechapunya

This research was supported by funding from
the Foundation for Research, Science and
Technology's Public Good Science Fund

(PGSF) and from the Building Research Levy.

ISSN: 01 13-3675

PREFACE

The Building Research Association of New Zealand (BRANZ) produced this
report to document its work to date on software applications in home
automation, and to suggest ways in which the Home Automation industry in New
Zealand might benefit from further advances in this field.

The work was jointly funded by the Building Research Levy and the Foundation
for Research, Science and Technology from the Public Good Science Fund.

The author also wishes to acknowledge the contributions made by Dr Wayne
Sharman, Dr John Duncan, and Ian Strawbridge.

Special thanks to Rey Crisostomo for his contribution in C++ programming.

READERSHIP

This report is intended for workers in software engineering, home
automation, electronics and manufacturing in New Zealand.

OBJECT-ORIENTED PROGRAHHING FOR HOm AUTOMATION APPLICATIONS
BRANZ Study Report SR56 A H Dechapunya

REFERENCE
Dechapunya, A.H. 1994. Object-Oriented Programming for Home Automation
Applications. Building Research Association of New Zealand, BRANZ Study
Report SR56, Judgeford, New Zealand.

REWORDS
Appliances; Automatic Controls; Computer Languages; Controls; Home
Automation; Manual Controls; Object-oriented Programming; Remote Controls;
Security Systems; Sensors; Smart House; Telecommunications; Thermostats;
Timers

ABSTRACT

An object-oriented framework for home automation applications is described.
The classes of objects developed provide a foundation for applications such
as automation of appliances and lights, energy management, entertainment,
and security and safety.

~ h & design of the C;++ classes employs various object-oriented techniques
including encapsulation, inheritance, and polymorphism. The result is a
framework for home automation applications which can be extended and
maintained efficiently.

PCs are proposed as suitable hardware for providing whole-house controllers.

1.1 Trends In Home Computers
1.2 Objectives
1.3 Report Design

2.0 PIBTHODOMGY

2.1 Underlying Methodology
2.2 PC-Based Home Automation
2.3 Object-Oriented Analysis and Design
2.4 Object-Oriented Programming
2.5 User Interface

3.0 HOUR AUTOUATION MODELS

3.1 Overview
3.2 Unit Model
3.3 Appliance Control Model
3.4 Security Model
3.5 Energy Management Model
3.6 Entertainment Model
3.7 Discussion

4.0 CONCLUSIONS

4.1 Pranework for Home Automation Applications
4.2 PGbased Home Controller
4.3 Further Work

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8A

Table 8B

Table 8C

Table 8D

Table 9A

Table 9B

Table 9C

Table 9D

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

TABLES

Use of a standalone PC for Home Control

Use of a networking PC for Home Control

Devices for Modelling the Total Home Controller

Main Menu of Total Home Controller

Unit and its Composition

Total Home Controller Class Diagram

Automatic Operation Menu

Class Specification of Unit

Class Specification of PlSensor

Class Specification of ATime

Class Specification of Appliance

C++ Representation of Class Unit

C++ Representation of Class PlSensor

C++ Representation of Class ATime

C++ Representation of Class Appliance

Appliance Control Menu

Class Specification of AppUnit

C++ Representation of Class AppUnit

Security Control Menu

Class Specification of SecUnit

C++ Representation of Class SecUnit

Energy Management Menu

Class Specification of EMUnit

C++ Representation of Class EMUnit

Entertainment Menu

Class Specification of ETUnit

C++ Representation of Class ETUnit

Page

1

1

4

5

6

6

9

10

10

11

11

12

13

13

14

15

17

17

19

20

20

2 2

23

2 3

24

25

25

Page 1

1.1 Trends In Home Computers

Computers are becoming more and more of a commodity. PCs are becoming
affordable by many New Zealand households (low-end PCs can cost well below
$2,000). The concept of utilising these low-end PCs for home automation
applications is being investigated. Using a PC as a whole-house controller
is a better approach than using a dedicated machine because:

* It can be used for other purposes. That is, users can run home
automation tasks at the same time as they are working on their
spreadsheets or word processing. * PCs already possess components which can be used for home automation
applications. * Hardware and software technology is improving continually. This means
that a PC-based home automation developer could utilise the technology
and pass it on to the users with little cost. * PCs are more flexible, in terms of adding home automation capabilities,
and upgrading hardware and software.

In New Zealand, 20% of households have PCs, normally used for word
processing, financial management and entertainment. Clearly, there is a
market for using a PC as a platform for integrated home automation. This
will add another dimension to the uses of PCs in homes.

The concept of using a PC as distributed home controller is also being
investigated overseas. The overseas products (software), however, are
designed for technically oriented consumers. The consumers need to apply
the system for their applications.

Our system is designed from day one to be application-oriented. The
foundation classes developed are application-specific classes.

1.2 Objectives

This work programme sets out to identify, adapt and exploit advanced
technologies to simplify and enhance the control of home environments. By
providing a structure and platform for modelling, designing and representing
physical processes for home applications and services.

Its current objective is to produce foundation classes, which provide a
framework for home automation applications (e.g. automation of appliances
and lights, energy management, entertainment, security and safety), and
implementing these classes on a PC with an object-oriented programming
language.

1.3 Report Design

Section 2 outlines the investigation's methodology.

Section 3 describes the main classes for home automation applications and
their C++ implementation, and discusses some issues relating to the use of
object-oriented programming language.

Section 4 concludes the report and outlines future work.

Page 2

2.0 HETHODOLOGY

2.1 Underlying Methodology

The work strategy is to employ, when possible, standard methodologies using
the underlying principles of:

* a uniform user interface for all applications; * re-engineering rather than reinventing; * object-oriented technology; and * integration rather than standalone.

The main technology used is object technology. It is seen as the technology
with the greatest promise to achieve the optimum life-cycle of software
applications development. It has been examined previously as a software
engineering approach to the development of home automation applications
(Dechapunya, 1992-1993).

2.2 PC-Based Rome Automation

There are two approaches to using a PC as a whole-house controller:
standalone, and networking. Table 1 illustrates a PC as a standalone home
controller. In this approach, controlled elements are connected directly to
the PC. Table 2 illustrates a PC as a networked home controller. In this
approach, both PC and controlled elements are connected to the house
communications network. The standalone approach is the older concept. The
trend is towards network. The network approach is cleaner (does not create
a wire mire), integrates into the home infrastructure, and makes use of
modern communications technology.

The three basic components required to turn a normal home PC into a PC-based
home automation system are: Software; PC hardware interface; and Controlled
device hardware interface.

Telephone
I

Appliances-----PC---Security
I

W A C

Table 1: Use of a standalone PC for Home Control

Home Communications Network

1 I I I I
Telephone Appliances PC Security W A C

Table 2: Use of a networking PC for Home Control

Page 3

2.3 Object-Oriented Analysis and Design

An object-oriented analysis and design is a set of guidelines and
frameworks, so a software engineer can develop an application model from
which object-oriented program can be produced (Branson and Herness, 1993).

The analysis and the design of the problem domain is based on Booch's
methodology (Booch, 1991). Booch's methodology has been gaining popularity
and it provides a more natural means of solving a problem (Dechapunya, 1993;
Horstmann, 1993; Singer, 1993).

2.4 Object-Oriented Programming

C++ is used as an object-oriented (00) programming language to implement the
model. C++ is the language of choice for a number of reasons (Atkinson and
Atkinson, 1992; Voss, 1991; Walker, 1992; Wybolt, 1990; Mitchell et al.,
1992; Atwood et al., 1993).

C++ is the de facto global industry standard for an object-oriented
programming language. Thus, a number of related technologies are available
to support the C++ environment including: class libraries, 00 databases;
and case tools for aiding software developments.

C++ is compatible with C, an industry standard for conventional programming
languages. C++ compilers will compile both C and C++ programmes. It is a
strongly-typed language. That is, each C++ variable must be defined to be
of a particular type. Typing makes coding more efficient and easier to
read. Errors in typing will be detected during the program's compilation.

C++ is an expressive programming language, allowing an easy path from
designing to programming. In some cases, designing with C++ is as easy as
using any specification language.

The downside of C++ is that it is a complex language and not easy to master.
Some academics do not favour C++ because it is not a pure object-oriented
programming language.

2.5 User Interface

The quality of the user interface is the key factor in gaining acceptance of
home automation systems by a more general and non-technical consumer. The
user interface must be powerful, easy to use, friendly, hide the complexity
of the system, and be based on accepted standards.

User interfaces for home automation applications can be classified as
existing technology in the home and modern technology going into homes.
Some of the existing technology in the home comprises keyboard, mouse,
computer screen, TV screen, remote, telephone, touch pad, and radio devices.
The modern technology going into homes comprises voice, sound, and speech
recognition.

The user interface plays a crucial role in this work. One of the underlying
principles is to provide a uniform user interface for all applications.
This means that as a new style of a user interface is designed, it has to be
implemented for other applications, and designed to be applied by a range of
technologies.

Page 4

3.0 HOME AUTOMATION MODELS

This chapter reports the investigations main result. It describes
foundation classes which provide a general framework for home automation
applications and their C++ representations. The chapter begins with an
overview of the main classes. Each main class is described in subsequent
sections.

Foundation and framework mean that the classes and their implementation
presented here will provide the framework from which specific applications
can be built.

3.1 Overview

3.1.1 Problem Domain

The application domain chosen for the study is a PC-based Total
Controller (THC). The network architecture (Table 2) is applied
Basically, the THC consists of:

Home
here.

* a standard PC running DOS 5.0 or higher; * a PC interface connecting the PC to the home communications network; * appliance interfaces connecting appliances to the home communications
network; and

* an applications software functioning as the controller and the
automator.

The function of the THC is to control and automate the home. The main tasks
and devices which are used to perform these tasks are shown in Table 3.

Tasks Devices

General control and automation
Control of appliances and lights
Security and safety
Energy management
Entertainment

Main Unit
Appliance Unit
Security/Safety Unit
Energy management Unit
Entertainment Unit

Table 3: Devices For Modelling The Total Home Controller

Page 5

3 . 1 . 2 The Main Menu

The main program controls various executions of the objects. The user
interface is a menu-based system. The main menu provides users with a top
level of operations as shown in Table 4. Each sub-menu allows control over
a specific functional area.

TOTAL HOME CONTROLLER
(c) Home Systems Limited 1993

A - Automatic Hode Uenu

1 - Appliance Operations Menu
2 - Security Menu
3 - Energy Management Uenu
4 - Entertainment Menu

Esc - Exit The System

Enter Your Selection -->

Table 4: Main Menu of Total Borne Controller

3.1.3 The Main Unit and Applications Units

As shown in Table 3, a total home controller is modelled as a system which
contains a number of specific Units which are Unit, AppUnit, SecUnit,
EmUnit, and EtUnit. The main Unit is designed to contain all the necessary
objects for home automation applications. Other units are classified as
views of home automation applications. They are created when required and
destroyed when no longer required. The applications units always access the
centralised Unit for the processing of their tasks.

The main Unit and applications Units are modelled as classes as shown below:

Task Class Object Classification Section

Control and automation UNIT Centralised Object 3.2
Appliances control APPUNIT Applications View 3.3
Security and safety SECUNIT Applications View 3.4
Energy management EMUNIT Applications View 3.5
Entertainment ETUNIT Applications View 3.6

The above classes are described in more details in Sections 3.2 to 3 . 6 ,
respectively. The concept of modelling a Unit is described in Dechapunya
(1993). Class Unit, and its composition is shown in Table 5. Table 6
illustrates the class diagram of the total home controller.

Page 6

I UNIT I
I I

-I-
I I I I

. I
I

I
I

I -- I -- I -
Panel I lDispFl IPlSensorI I ATime I IAppliancesI

I
I

I
I I I I I I I

I I

Table 5: Unit and its Composition

I

, , i
i Control ' . _ \ (. Indicator:

\ . . I I ,
I - - '_ , '- ' '-,

Table6: Total Home Controller Class Diagram 1
I

Page 7

3 . 2 Unit Uodel

3.2.1 Composition and Design

The physical devices (appliances, lights, etc.) connecting to the home
communications network are modelled as a collection of controlled objects.

Class Unit is composed of classes Panel, Display, PlSensor, ATime, and
Appliance. Classes Panel and Display have been described in Dechapunya
(1993). Unit has one or more appliances. Unit owns the appliances; each
appliance, in turn, knows its owner and can access all the devices owned by
the Unit.

Class ATime is designed to provide support for data and functions which are
associated with times. The data members of class ATime include sunData
(contains values of sunrise and sunset), day (indicates it is during the
day), weekDay (indicating it is a weekday), winter (for winter) etc. The
functions of class ATime include setHousekeepingTime which is used to
determine the values of the data members.

Two classes are designed to represent appliances: Appliance and
LampAppliance. Class Appliance has been designed to provide all of the
attributes of an appliance. It contains all the data and functions of an
appliance. The data members of class Appliance include name which is the
name of an appliance, address which represents a physical location of an
appliance, onTime which is the time an appliance will be switched on, and
isOn indicates whether an appliance is on or off. The functions of class
Appliance includes GetName which is used to obtain the name of an appliance,
GetAddress is used to get the address of an appliance,
SwitchOn/SwitchOff/Dim/Bright. are used to operate an appliance, GetType is
used to determine the type of an appliance which can be either
normal-appliance or light. Class LampAppliance contains the data and
functions of a lamp or incandescant light. Class LampAppliance inherits
from class Appliance.

Borland container class library (Borland C++ Programmer's Guide, 1992) is
used by class Unit to store an array of appliance pointers as shown below.

TIArrayAsVector(Appliance> appliances;

TIArrayAsVector = name of a Borland class template
Appliance = name of a class
appliances = an array of appliance pointers

The function of TIArrayAsVector is to provide a container for an array of
objects. The statement "TIArrayAsVector<Appliance>" represents a class of
an array of appliance pointers. That is, "appliances" is an instance of a
class of an array of appliance pointers. Initially the container is empty.
A function "LoadAppliancesn is used to place the pointers of each appliance
data into the container. Once these pointers are placed in the container,
programs can utilise them.

Using container classes means that the number of appliances does not need to
be fixed, allowing the user to expand the number of appliances without being
concerned about telling the system how many appliances there are.

Since the appliance pointers point to the base class Appliance, and because
LampAppliance is derived from the base class Appliance, the pointers also
point to LampAppliance. Polymorphism (the ability for the same message to

Page 8

produce different operations depending on the type of object it is sent to)
is applied here to ensure that only lamps or lights can be dimmed or
brightened. A DIM or BRIGHT message can be sent to any type of appliance,
normal or lamp. Once the message is received, the same message will perform
different operations for different types of appliances, depending on the
type of the appliance. The program representing this concept is shown
below:

class Appliance
(
public:

virtual void Dim();
virtual void Bright();

I;
void Appliance::Dim()
I
j
void Appliance::Bright()
I

class LampAppliance : public Appliance
I
public:

virtual void Dim();
virtual void Bright();

I;
void LampAppliance::Dim()
I

I
void lampAppliance::Bright()

As shown above, the DIM or BRIGHT functions of class Appliance perform
nothing. On the contrary, the DIM or BRIGHT functions of class
LampAppliance perform dim or brighten.

Object UnitA, the main controlling object, is created at the start of the
program and lasts' the duration of the program. AppUnit, SecUnit, EmUnit,
and EtUnit are the views of the application of Unit. Each of these
application units are created and destroyed sequentially. UnitA is created
and initialised as shown below. It shows that the UnitA is instantiated
with two default messages. H1 is the default appliance, 4 is the default
serial port. The port is checked for availability. The Homedata.dat file
which contains the data of appliances and lights is then loaded.

Unit UnitA("ElW, "4")
UnitA.checkPortID();
UnitA.LoadAppliances("c:\\thc\\8omedata.datn);

Page 9

3.2.2 Automatic Operation

In automatic mode, THC runs continuously performing a number of tasks
depending on two external forces: time and external events.

Time means minute, hour, day, month, and season. External events can be
caused by a number of sources including commands from homeowners, presence
of intruders, or requests from other controllers or appliances.

In conventional houses, switches are hardwired into the power circuits and
their operations are associated with outlets. In an automated home,
switches are addressable and can be controlled from any controller.

Sensors include those for detecting/measuring occupancy, intrusion,
temperature, humidity, light, smoke and air quality. Under programmed
control, a sensor can provide a trigger to other events. For example, a
temperature sensor will cause a fire alarm to ring if it detects abnormally
high temperatures.

The design of the user interface for automatic operation is shown in Table
7. The menu provides a general interface for information on the operation
of the automatic part of THC.

AlJl'OUATIC MODE MENU

A - Activate Automatic Mode
1 - General Info
2 - Info on Security Tasks
3 - Info on Energy Management
4 - Info on Housekeeping
0 - Quit This Menu
Enter Your Selection -->

Table 7: Automatic Operation Menu

3.2.3 Class Specifications

Classes Unit, PlSensor, ATime, and Appliance are described in Tables 8A-8D.

3.2.4 C++ Representation

Tables 9A-9D show an abstract implementation of classes Unit, PlSensor
ATime, and Appliance using an object-oriented programming language, C++.
Full listings of source codes are not available in this report.

Page 10

Class Name: Unit
Function: General Control and Automation
Attributes: appliances

Tim&
PaneU
DisplayA
PlSensorA
unitaddress
houseID
unitID
securityActivate
intruder
home

Operations: LoadAppliances
getEouseIDandUnitID
getunitstatus
doPunction
allUnitsOff
allLightsOn
allLightsOff
s tartuarm
stopAlarm
automatic

Used by: None
Contains: Panel, Display, ATime, Appliance, PlSensor
Inherited by: None
Derived from: None

Table 8A: Class Specification of Unit

Class Name: PlSensor
Function: Poverline monitoring and sensing
Attributes: portID
Operations: checkPortID
Used by: Unit
Contains: None
Inherited by: None
Derived from: None

Table 8B: Class Specification of PLSensor

Page 11

Class Name: ATime
Function: Provide time in a general sense
Attributes: sunData

t imeOfDay
dayName
day
evening
night
weekDay
sunRise
sunset
winter
summer
wakeUpTime

Operations: setHousekeepingTime
showDate
shoflime

Used by: Unit, AppUnit, SecUnit, EmUnit, EtUnit
Contains: None
Inherited by: None
Derived from: None

Table 8C: Class Specification of ATime

Class Name: Appliance
Function: Representing an appliance
Attributes: name

address
onTimeE
onTimen
of fTimeB
of £Time&!
isOn
owner

Operations: Ge tName
GetAddress
SetOwner
Swi tchOn
Switchof f
SetOnStatus
IsOn
GetOnTime
hour
minute
GetOffTime
SetOnTime
SetOffTime
CheckTime
Getl'ype
Dim
Bright

Used by: Unit
Contains: None
Inherited by: None
Derived from: None

Table 8D: Class Specification of Appliance

Page 12

// UNIT.EI
// CLASS Unit DEFINITIONS

class Unit
(
public:
TIArrayAsVector<Bppliance> appliances;
ATime ATimeA;
Panel PanelA;
Display DisplayA;
PlSensor PlSensorA;

public:
char * unitAddress;
int houseID;
int unitID;
Unit(char * unitAddress1, char * portIDA,
int panelStateA, int buttonPositionA, int knobSettingA);

public:
int LoadAppliances(const char * filename);
void getHouseIDandUnitID();

// Appliances Operation
public:
void getUnitStatus(int applianceselected);
int doFunction(const char * address, int func);
void allUnitsOff(char homeID);
void allLightsOn(char homeID);
void allLightsOff(char homeID);

// Security
public:
int securityActivate;
int intruder;
int home;
virtual void startAlarm();
virtual void stopAlarm();

// Automatic Operation
public:
void automatic();

/ / Accessing ATimeA Object
public:
void setEousekeepingTime() (ATimeA.setHousekeepingTime();]

protected:
void showDate() (ATimeA.showDate();]
void showTime() (ATimeA.showTime();)

// Accessing PlSensorA Object
public:
int checkeortID() (return P1SensorA.checkeortID~);J

1 ;
/ / FUNCTIONS DEFINITION -.

Table 9A: C++ Representation of Class Unit

Page 13

// PLSENS0R.E
// CLASS PlSensor DEFINITIONS

class PlSensor
(
public:
char * portID;
int checkPortID();
PlSensor(char * portID1);

1 ; -
// FUNCTIONS DEFINITION

Table 9B: C++ Representation of Class PlSensor

/ / AT1m.E
// CUSS ATIUE DEFINITIONS

class ATime
(
private:
static int sunData[Z][12];
static char *timeOfDay[3];
static char *dayName[7];

public:
int day;
int evening;
int night;
int weekDay;
int sunRise;
int sunset;
int winter;
int summer;
int wakeUpTime;

public:
time-t timer;
struct tm *tblo&;

public:
ATime() ;
void setEousekeepin~ime();
void showDate();
void showTime();

I ;
// FUNCTIONS DEFINITION

Table 9C: C++ Representation of Class ATime

Page 14

// APPL1ANS.E
/ / CLASS Appliance DEFINITIONS

const int APPLIANCE NAME UAXLEN = 25;
const int APPLuLNcE-ADDR~%S - - UAXLEN = 2;

class Unit;

class Appliance (
public:

Appliance(const char *name, const char *address);
virtual -Appliance();
inline const char *GetName() const;
inline const char *GetAddress() const;
inline void SetOvner(Unit *ovner);
void Switchon();
void SvitchOff();
inline void SetOnStatus(int status);
inline int Ison() const;
void GetOnTime(int *hour, int *minute) const;
void GetOffTime(int *hour, int *minute) const;
void SetOnTime(int hour, int minute);
void SetOffTime(int hour, int minute);
void CheckTime(int hour, int minute);
virtual char GetType();
virtual void Dim();
virtual void Bright();

protected:
char name[APPLIANCE NAME naXLEN + 11;
char address [APPLI~CE - DRESS - HBXLEN + 1] ;
int onTim&;
int onTim&;
int offTim&;
int offTim&;
int ison;
Unit *owner;

1;
class LampAppliance : public Appliance (
public:

LampAppliance(const char *name, const char *address);
virtual -LampAppliance();
virtual char GetType();
virtual void Dim();
virtual void Bright();

I ;
-.-
/ / FUNCTION DEFINITIONS

Table 9D: C++ Representation of Class Appliance

Page 15

3.3 Appliance Control Model

3.3.1 Composition and Design

The control and operation of appliances and lights are designed as an
applications view of a Unit. Class AppUnit is used to implement this task.
When created, AppUnit object contains a pointer to an instance of class
Unit. This allows AppUnit to utilise the resources of this particular
instance of Unit. Object AppUnit is created when needed and destroyed when
no longer required.

Object AppUnitA is created dynamically i.e., it is created at run-time.
Once the AppUnitA performs its tasks, it can be destroyed, thus saving
memory space. The programming method for this dynamic creation AppUnitA
object is shown below:

AppUnit * AppUnitA;
AppUnitA = new AppUnit(&UnitA);
AppUnitA->appliancdenu();
delete AppUnitA;

The dynamic creation method is normally used because it uses memory space
more efficiently. This is due to the nature of the program sequence. As
shown in the above listing, there is no need for all objects to be allocated
at the same time, since each object is required to work independently of any
other. Once the object has done its task, it is destroyed. One of the
disadvantages of the dynamic creation method is that the object has to be
created each time a user selects a particular task.

The design of the user interface for the control of appliances and lights is
shown in Table 10. The menu allows users an easy and clear control of
appliances and lights.

APPLIANCE OPERATIONS m
S - Select an Appliance Unit
1 - Turn Off Unit
2 - Turn On Unit
3 - Dim Unit
4 - Brighten Unit
5 - A11 Lights On
6 - All Lights Off
7 - All Units Off
U - Unit Status
0 - Quit This Menu

Enter Your Selection -->

Table 10: Appliance Control Menu

Page 16

The design of appliances data input is crucial to the program. Basically,
the input data cannot be hardcoded in the program since each home will have
different requirement. Ideally, the input data should be entered
graphically using a standard Windows interface. This will be considered
later. At this stage of the development, a text input data file is used, as
shown below:

Appliance Type Appliance Description Appliance Address

"Study Room Beatern,
"Study Room Radio",
"Study Room Pan",
"Coffee Warmer",
"Neon Light",
"Lounge Table Lampn,
"Lounge Light",
"Lounge Beater",
"Washing Machine",
"Outdoor Light".
"Telephone Light",
"Security Light",

"Kl",
"KZ",
"m",
"K4",
"nu,
"K6",
"K7",
"K8" ,
"El",
"Al" ,
"PlO",
"P15".

As shown above, an appliance can be classified into a normal appliance, A,
or a light, L. A normal appliance can not be dimmed or brightened. The
input data will be expanded to include more attributes in future work.

3.3.2 Class Specifications

Class AppUnit is described in Table 11.

3.3.3 C++ Representation

Table 12 shows an abstract implementation of class AppUnit using C++. Full
listings of source codes are not available in this report.

The relationship between AppUnit and Unit is worth looking at. As shown in
Table 12, this relationship is represented by the statements "AppUnit(Unit
UnitY);" and "Unit UnitX;". The constructor of AppUnit is represented by
the following statement:

AppUnit::AppUnit(Unit * UnitY)
: UnitX(UnitY) (1

The above statement can be explained as follows: When an instance of
AppUnit is created, its constructor will be executed automatically. In this
case, it will create a pointer to Unit called UnitY. This pointer, however,
will disappear after the constructor is executed since it is a local
variable of the constructor. Thus, a formal data member must be defined,
UnitX, then, UnitY is assigned to UnitX as shown in the statement
"UnitX(UnitY)". Because it is a data member of AppUnit, UnitX will continue
to exist throughout the lifetime of the AppUnit instance. This relationship
between Unit and AppUnit allows class AppUnit to access the public functions
of class Unit as shown in the example below:

Page 17

Class Name: AppUnit
Function: Control of appliances and lights
Attributes: UnitX (pointer to Unit)
Operations: applianceklenu

selectAppliance
Used by: None
Contains: None
Inherited by: None
Derived from: None

Table 11: Class Specification of AppUnit

/ / CLASS AppUnit DEFINITIONS

class AppUni t
I
public:
AppUnit(Unit * Unity);
Unit * UnitX;

public:
void applianceMenu();
int SelectAppliance();

1 ;
. . .
// FUNCTION DEFINITIONS

Table 12: C++ Representation of Class AppUnit

Page 18

3.4 Security Model

3.4.1 Introduction

Study has shown that as many as 90% of homeowners who purchased home
security systems are not using them (Electronic House, May/June 1989).
Basic reasons given were because they were: difficult to use; unreliable;
and false alarms occurred.

Home security can be passive, active or a combination of both. A passive
system is achieved by making the home look and sound occupied. An active
system is achieved by activating certain pre-programmed functions when an
intruder is detected.

A typical active system consists of sensors which sense/detect the status of
doors/windows, or sense/detect movement of intruders. When an intruder is
detected, the sensors will perform alarm functions which include: turn on
outdoor lights; sound bell; automatic telephone to security/police; and
disarming intruders.

There are a wide range of intruder alarm systems, from basic systems which
can be obtained from any retail outlets, to high-end systems, which may
require experts to install and maintain.

An effective system is the one which meets the requirements of homeowners,
security, police and insurance. These requirements include:

* Simple to Install and Use: A wireless system provides flexibility and
portability. The system can be easily re-configured. * Continuous Operation: Backup power supply is required. * Reliable Operation: That is, the system must have reliable detectors,
reliable communication, reliable system controller, reliable backup
power supply, and reliable start/stop. * Access to the system only by homeowners: The system should be installed
and located in a way that prevents intruders accessing it.

3.4.2 Composition and Design

The security and safety functions are designed as an applications view of a
Unit. Class SecUnit is used to implement this task. When created, object
SecUnitA contains a pointer to object UnitA, allowing SecUnitA to utilise
the resources of UnitA. SecUnitA is created when needed and destroyed when
no longer required. The programming method for creating SecUnitA is shown
below:

SecUnit * SecUnitA;
SecUnitA = nev SecUnit(&UnitA);
SecUnitA->securityMenu();
delete SecUnitA;

The design of a user interface for security and safety is shown in Table 13.
The menu allows users to control and manipulate security.

Page 19

SECURITY HENU

1 - Panic Button: Help Help Help
2 - Activate Security: Going Out
3 - Activate Security: Stay Home
4 - Deactivate Security: I'm Home
5 - Security Report

0 - Quit This Henu

Enter Your Selection -->
Table 13: Security Control Menu

3.4.3 Class Specifications

Class SecUnit is described in Table 14.

3.4.4 C++ Representation

Table 15 shows an abstract implementation of class SecUnit using C++. Full
listings of source codes are not available in this report.

The present design of class SecUnit, which is an applications view for
security and safety services, contains one function only, securityMenu. The
data and functions related to security tasks are encapsulated in class Unit.
The relationship between Unit and SecUnit is similar to those between Unit
and AppUnit discussed in Section 3.3. This relationship allows class
SecUnit to access the public functions of class Unit, as shown in the
example below:

case '1': UnitX->startAlarm();
UnitX->automatic();
break;

case '2': pauseTime();
UnitX->securityActivate = 1;
UnitX->home = 0;
UnitX->automatic();
break;

case '3': UnitX->securityActivate = 1;
UnitX->home = 1;
UnitX->automatic();
break;

case '4': UnitX->securityActivate = 0;
UnitX->home = 0;
UnitX->stopAlarm();
break;

case ' 5 ' : UnitX->DisplayA.messageReport("security.log");
1

The function automatic currently contains nothing. The detailed study of
automatic tasks will be the subject of future work.

Page 20

Class Name:
Function:
Attributes:
Operations:
Used by:
Contains:
Inherited by:
Derived from:

SecUni t
Security and Safety
UnitX (Pointer to Unit)
securityUenu
None
None
None
None

Table 14: Class Specification of SecUnit

// SECUNIT.H
// CLASS SecUnit DEFINITIONS

class SecUnit
{
public:
SecUnit(Unit * Unity);
Unit * UnitX;

public:
void securityUenu();

1;
. ..
// FUNCTION DEPINITIONS

Table 15: C++ Representation of Class SecUnit

Page 21

I 3.5 Energy Management Model

3.5.1 Introduction
-

There are a range of factors affecting household energy consumption

I including insulation, ventilation, space heating, water heating, space
cooling, and the way the house is used.

Of the above factors, only insulation is static. The others can be adjusted

I dynamically to suit the needs of occupants. The adjustments, if properly
done, can lead to the right balance between comfort and saving in energy.
Home automation systems can make these adjustments.

I 3.5 .2 Composition and Design

The-Energy-management function is designed as an applications view of class
Unit. Class EmUnit imolements this task. When created. Obiect EmUnitA
contains a pointer to object UnitA allowing EmUnitA to utilise the resources
of Uni tA.

Object EmUnitA is created when needed and destroyed when no longer required
The programming method for creation of EmUnitA is shown below:

EmUnit * EmUnitA;
EmUnitA = new EmUnit(&UnitA);
EmUnitA->energyManagementHenu();
delete EmUnitA;

The design of a user interface for the energy management operation is shown
in Table 16. The menu allows users to manage energy usage.

ENERGY MANAGEMENT HENU

1 - WAC: I am home
2 - WAC: I am going out
3 - Thermostat Setting
4 - Energy Usage Report

0 - Quit This Menu
Enter Your Selection ->
Table 16: Energy Management Menu

3.5.3 Class Specifications

Class EmUnit is described in Table 17.

3.5.4 C++ Representation

Table 18 shows an abstract implementation of classes EmUnit using an
object-oriented programming language, C++. Full listings of source codes
are not available in this report.

The current design of class EmUnit, an applications view for energy
management applications, contains three functions: energyManagementMenu,

I
setThermostat, and hvac. The relationship between Unit and EmUnit is
similar to that between Unit and AppUnit. This relationship allows class
EmUnit to access the public functions and data of class Unit. The

I
implementation of the design of energy management operation, shown in Table
16, using C++ is shown in the example below: I

case '1': UnitX->home = 1;
hvac() ;
break;

case '2': UnitX->home = 0 ;
hvac() ; -_._---

I
break;

case '3': setTherrnostat();
break:

I
~ - - ~

case '4'- . ~nit~b~isplay~.rnessa~e~eport("energy. log");
break;

default : break;
1

At this stage of the work, the function hvac() contains nothing. The
detailed study of energy management applications is the subject of future

I
work. I

Page 23

Class Name: EWni t
Punc t ion: Energy Management
Attributes: UnitX (Pointer to Unit)
Operations: energynanagementnenu

hvac
setThermostat

Used by: None
Contains: None
Inherited by: None
Derived from: None

Table 17: Class Specification of BHUnit

// I3MNCT.H
// CLASS EmUnit DEFINITIONS

class EmUnit
r
public:
EmUnit(Unit * Unity);
Unit * UnitX;

public:
void energyManagementMenu();
void setThermostat0;
void hvac(); //design only

I ; -
/ / FUNCTION DEFINITIONS

Table 18: C++ Representation of Class EHUnit

Page 24

rta ~t Model

3.6.1 Composition and Design

The Entertainment function is designed as an applications view of a Unit.
Class EtUnit is used to implement this task. When created, object EtUnitA
contains a pointer to object UnitA. This allows EtUnitA to utilise the
resources of UnitA. The programming method for creation of EtUnitA is shown
below:

EtUnit * EtUnitA;
EtUnitA = new EtUnit(6UnitA);
EtUnitA->entertainmentMenu();
delete EtUnitA;

The design of a user interface for the entertainment operation is shown in
Table 19. The menu provides users an access to entertainment functions of
the total home controller system.

1 - Party Time
2 - Party End
3 - Musical Interlude
4 - CD Player

0 - Quit This Menu

Enter Your Selection -->
Table 19: Entertainment Menu

At this stage of the design, only two devices are included in the menu, a
Sound Card and a Compact Disk Player.

3.6.2 Class Specifications

Class EtUnit is described in Table 20.

3.6.3 C++ Representation

Table 2 1 shows an abstract implementation of classes EtUnit using an
object-oriented programming language, C++. Pull listings of source codes
are not available in this report.

At the current stage of the work, the functions musicMenu0 and cdPlayer0
contain nothing. The detailed study of entertainment applications is the
subject of future work.

Page 25

Class Name: ETUni t
Function: Entertainment
Attributes: UnitX (Pointer to Unit)
Operations: entertainmentnenu

partpime
partyEnd
musidenu
cdPlayer

Used by: None
Contains: None
Inherited by: None
Derived from: None

Table 20: Class Specification of ETUnit

// ETUNIT.H
// CLASS EtUnit DEFINITION

class EtUnit
{
public:
EtUnit(Unit * Unity);
Unit * UnitX;

public:
void entertainmentHenu();
void partpime();
void partyEnd();
void musicUenu(); // design only
void cdPlayer(); // design only

1 ; . -. .-.
// FUNCTION DEFINITIONS

Table 21: C++ Representation of Class ETUnit

Page 26

3.7 Discussion

C++, a hybrid object-oriented programming language, provides a good
environment and language support for developing home automation
applications. C++ allows home automation objects to be better represented
in a computer, in that it allows the total system to decompose into a number
of integrated modules. Each module retains its independence, making the
system extremely modular. This capability enables programmers to write
programs in a more natural manner.

Specifically, the features which prove useful in this study are inheritance,
composition, encapsulation (private, protected, public), polymorphism,
dynamic binding, and the container class library.

3.7.2 Global Data

Global data is not used as a general design practice since it contradicts
the object-oriented principle of encapsulation. The use of global data
extensively in a program can potentially lead to difficulty in maintaining
the program.

However, there exists the need for global data in home automation
applications so that when an object changes some or all of its data, all
other objects see the new data. An example is the ability for all objects
to check security status, intruder status, and whether the home is occupied.

There are two options to implement this requirement in .C++. The first
option is to declare the data as true global in the main program as shown
below:

int securityActivate;
int intruder;
int home;

The second option is to declare the data as a static data member as shown
below:

class Unit
(
protected:
static int securityActivate;
static int intruder;
static int home;

1 ;
int Unit::securityActivate = 0;
int Unit::intruder = 0;
int Unit::home = 1;

In the second option, the encapsulation of the data in class Unit ensures
that only objects derived from Unit can access the data, and that the static
nature of the data means that when an object changes the data, all other
objects would see the changes.

Page 27

Neither method was used in the final implementation. In the final program,
the design is based on object UnitA being active throughout, and that the
other main objects, applications views, are created as they are required by
the users. Thus, by making the above variables (securityActivate, intruder,
home) data of the class Unit, these variables will also be active throughout
the life of the active program.

3.7.3 Container Class Library

In an early prototype of this study, appliances were modelled as data
members as:

public:
char * studyRoomEeaterAddress;
char * radioAddress;
char * fanAddress;
char * coffeeWarmerAddress;
char * tableLampAddress;
char * 1ampAddress;
char * 1ightAddres.s;
char * neonAddress;
char * 1oungeHeaterAddress;
char * waterHeaterAddress;
char * washingMachineAddress;
char * alarmAddress;

One of the problems with this method is that homeowners do not have control
in the set up of the appliances, since they are hardcoded in the compiled
program. Another problem is that the above method does not utilise the
advantages of object-oriented programming.

An object-oriented method to get around this problem is to create a class
Appliance which encapsulates all attributes and operations of a generic
appliance. The base Appliance class can be further classified into normal
appliances and lights.

The Borland container class library (Borland C++ Programmer's Guide, 1992)
is used to implement the concept. The result is a superior programming
routine which allows users to manipulate, edit/delete/modify their
appliances independently of the program. The benefits to programmers are
enormous. Basically, it provides a complete basis for designing a generic
class of appliance which is easy to implement, extend and maintain.

3.7.4 User Interface

The user interface accounts for at least 30% of the programming effort. The
present design of the user interface is menu-oriented and implemented in a
DOS environment. The basic problem with the menu-based user interface is
that users are not in control of the applications. This is because a
menu-based system only allows users to access the applications linearly.
The interactivity between users and the applications is limited.

It would be better for the applications to be accessed not from top to
bottom, but from any way which users choose to elect (non-linear access).
Users have their own specific ways of using the applications. They should
be able to go to any option, jump to any other option, and get answers any
time they need them. This could be done by re-engineering the user
interface using the Windows graphical user interface and multimedia methods.

Page 28

4.0 CONCLUSIONS

4.1 Framework for Home Automation Applications

An object-oriented framework for home automation applications has been
developed. The classes of objects developed provides an application
framework for automation of appliances and lights, energy management,
entertainment, security and safety. In a nutshell, it is a software design

I
for total home control applications using object-oriented technology. The
design and the classes have been implemented as a prototype on a PC using
object-oriented programming language, C++.

I
C++ provides an excellent environment and language support for this work.
It enables programmers to write programs in a more natural manner. C++ is
the de facto global industry standard for object-oriented programming

I
languages. That is, C++ is widely used and accepted throughout the world.
The major weaknesses of C++ are its complexity of language and lack of
standards for class libraries.

I
4.2 PC-based Home Controller

The concept of utilising low-end PCs for home automation applications is
being investigated. The technology of PCs in both hardware and software is
improving continually. This means that PC-based home automation developers
can utilise the technology and pass it on to users with little cost.

I
I

Using a PC for home automation based applications means that any standard
object-oriented programming language can be used as an application language.

I
4.3 Further Work

The immediate future work is to apply the home automation models developed
to housekeeping applications. This will be achieved by extending existing

I
classes as well as creating new classes. The principal application will be
in the control and automation of lights and appliances. 1
Other important work will include the design and development of
object-oriented graphical user interfaces and the integration of multimedia
technologies. I

Page 29

REFERENCES

Atkinson, L., and Atkinson, M. 1992. Using Borland C++ 3 (2nd Edition).
Que Corporation, Carmel, IN, USA. pp. 1158.

Atwood, W., Breakstone, A., Britton, D., Burnett, T., Myers, D., and Word,
G. 1993. The Gismo Project. C++ Report March-April 1993: 38-43.

Booch, G. 1991. Object-Oriented Design with Applications.
Benjamin/Cummings Redwood City, CA, USA. pp. 580.

Borland C++ Programmer's Guide 1992. Borland International, Inc., Scotts
Valley, CA.

Branson, M., and Herness, E. 1993. The Object-Oriented Development
Process. Object Magazine 3(4): 66-70.

Dechapunya, A.H. 1992. Standards For Communications Networks In The Home.
Building Research Association of New Zealand, Miscellaneous Report,
Judgeford, New Zealand.

Dechapunya, A.H. 1993. Object-Oriented Methodology for Home Automation
Applications. Building Research Association of New Zealand, BRANZ Study
Report SR52, Judgeford, New Zealand.

Horstmann, C.S. 1993. Two leading object-oriented design tools. C++
Report 5(1): 62-67.

Mitchell., E., Becker, P., Dlugosz, J., Finnell-Fruth, C., Free, G., Fruth,
R., Herring, B.D., and Schulmeisters, K. 1992. Secrets of the Borland C++
Masters. SAMMS Publishing Carmel, Indiana 46032 USA, pp. 730.

Singer, G. 1993. An Eclectic Approach to Developing an 0-0 Methodology.
Object Magazine 3(4): 36-41.

Voss, G. 1991. Object-Oriented Programming: An Introduction. Osbourne
Mcgraw-Hill, Berkeley, CA, USA.

Walker, G. 1992. Why the choice must be C++. The C++ Journal 2(1):
52-65.

Wybolt, N. 1990. Experiences with C++ and object-oriented software
development. 1990 Usenix C++ Conference, pp. 1-9.

.~ ~ .

Report on object-oriented programming for
DECHAPUNYA, A.H.
Aug 1994 ce?y
32787

THE RESOURCE CENlRE FOR BUILDING E'GEUENCE

BRANZ MISSION

To be the leading resource for the
development of the building and

construcuon industry.

HEAD OFFICE AND
RESEARCH CENTRE

Moonshine Road, Judgeford
Postal Address - Private Bag 50908, Porima

Telephone - (04) 235-7600, FAX - (04) 235-6070

REGIONAL ADVISORY OFFICES

AUCKLAND
Telephone - (09) 524-7018

FAX - (09) 524-7069
118 Carlton Gore Road, Newmarket

PO Box 99-186, Newmarket

WELLINGTON
Telephone - (04) 235-7600

FAX - (04) 235-6070
Moonshine Road, Judgeford

CHRISTCHURCH
Telephone - (03) 366-3435

FAX - (03) 3664552
GRE Building

79-63 Hereford Street
PO Box 496

