
OBJECT-ORIENTED Hl3THODOUX;P FOR HOHE AIITOUATION APPLICATIONS
BRANZ Study Report SR 52 A E Dechapunya

RBPERENCE
Dechapunya, A.H. 1993. Object-Oriented Methodology for Home Automation
Applications. Building Research Association of Nev Zealand, BRAN2 Study
Report SR 52, Judgeford, Nev Zealand.

KEYWORDS
Appliances, Automatic Controls, Computer Languages, Controls, Home
Automation, Hanual Controls. Object-oriented Programming, Remote Controls,
Security Systems, Sensors, Smart House, Telecommunications, Thermostats,
Timers.

ABSTRACT

The object-oriented paradigm has been examined as a softvare engineering
approach to the development of home automation applications.
Object-oriented programming evolves as a consequence of natural progress in
programming languages. This type of programing results in reduction in
program complexity, modularity, code reusability. and programming
efficiency; vhich in turn brings about cost savings in the development and
maintenance of softvare.

Object-oriented programming mimics human interaction vith objects in real
life. This makes it easy to model home automation using the object-oriented
paradigm. The encapsulation of data and methods within an object makes it
easy for interoperability to be implemented. (Interoperability is the
ability for different products from different manufacturers to vork
together.)

Smart House and CAL object specifications for home automation are examined,
as is an object-oriented programming language. Finally, the application of
object-oriented technology to home automation applications is demonstrated.

CONTENTS

2.0 HOME AUTOMATION APPLICATIONS

2.1 Borne Automation
2.2 Interoperability
2.3 Requirements for an Application Language

3.1 Introduction
3.2 Fundamental Concepts
3.3 Booch's Uethodology
3.4 Rumbaugh's Uethodology
3.5 Summary

4.0 APPLICATIONS LANGUAGES FOR HOUR AUTOMATION

4.1 Smart House Application Language
4.2 Common Application Language (CAL)
4.3 Summary

5.0 CLASS SPECIFICATIONS FOR HOME AUTOMATION

Page

1

5.1 The Basis
5.2 Application Domain
5.3 Identifying Classes and Objects
5.4 Specifying Attributes and Methods
5.5 Identifying Relationships Between Classes
5.6 Representation of Classes and Objects on a Computer
5.7 S-

CONCLUSIONS 34

6.1 Object-Oriented Approach
6.2 Object-Oriented Programming Language
6.3 Further Work

GLOSSARY

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17A

Table 17B

Table 18

Table 19

Table 20

Objects Hierarchy

Boochls Uethodology

Rumbaugh's Uethodology

Basis of An Object-Oriented Uethodology

Smart House Applications Language Object Tree

Structure of Common Application Langxage

Devices for Uodelling a Water Beater

Class Specifications

Kind-of Relationships (Inheritance) Diagram

Part-of Relationships (Composition) Diagram

WaterEeaterUnit and its Composition

Representing Class Knob in C++

Representing Class Button in G++

Representing Class Lamp in C.H

Representing Class Display in C++

Representing Objects in C++

Representing Inheritance in C++

Representing Inheritance in C++

Representing Composition of WaterEeaterUnit in C++ 30

Representing Composition of WaterEeaterPanel in C++ 31

Representing Uessages in C++ 32

Page I

1.0 OBJECTIVES

This work sets out to identify the potential of advanced software
engineering techniques to provide a structure and platform for an integrated
information systems environment, by:

* evaluating object-oriented methodology as a software engineering
approach for home automation applications

* producing an example of an object-oriented model for home automation.

2.0 E O m ABUTMATION AF'PLICATIONS

2.1 Home Automation

Home Automation is a term that denotes the total integration of various
activities or services within the home. It links together domestic
appliances, lights, telephones etc., in order to give homeowners a means to
automate and control home activities. This frees them from day-to-day
routine operation.

Home automation provides the following integrated services (Dechapunya,
1992):

* Automation of appliances and lights * Energy management * Communication and information * Entertainment * Security and safety * Environmental control.
2.2 Interoperability

Since the mid 1980s, manufacturers, governments, standards organisations,
and consortiums all over the world have been working at establishing
standards for communication/interconnection between home products. The
joint technical committees of the International Standards Organisation and
the International Electrotechnical Commission (ISO/IEC) recently established
a working group SC25 to establish an international standard for Home
Electronic Systems (HES).

The Open System Interconnect (OSI) model is being used as a guiding
principle to provide a common set of rules for the development of
communications standards. This model was developed by ISO/IEC to serve as a
framework for comprehensive and flexible communications for electronic
devices. The model consists of seven layers. For each layer, a protocol is
defined. The model does not dictate how the layers are to be implemented,
i t defines what is required, not how it will be done.

The biggest benefit of the OSI model is that it can make the communications
process independent of the message. That is, the message being sent is
totally independent of the means by which it is sent.

The seven layers of the OSI model are designed to be largely independent of
each other. The layers are:

* Physical Layer: Electrical and mechanical parts of communications are
defined.

Page 2

* Data Layer: The language of messages is defined. * Netvork Layer: The process for messages conversion is defined.
* Transport Layer: This protocol defines a process by which messages can

be transmitted between locations. * Session Layer: The communications process for message translation is
defined. * Presentation Layer: The words used to express messages are defined. * Application Layer: The means by which products interact with each other
are defined. This layer is responsible for providing an applications
language.

The arrival of standards for home electronic systems will result in a new
generation of, home automation products. One key advantage of these new
products will be their ability to interface with each other, allowing for
communication between the products of different manufacturers. This
function is known as interoperability.

2.3 Requirements for an Application Language

To achieve the goals of interoperation, a framework for comprehensive and
flexible application languages is required. Software applications will be
written to provide:

* Product-to-product control and communication * User-to-product control and communication * Controller-to-product control and communication.

An applications language will allow manufacturers to develop sophisticated
home products. Manufacturers will be able to write software applications
allowing products from various manufacturers to work together. This will
provide an environment so that appliances attached to home communication
networks can communicate with each other.

Requirements for an application language for home automation applications
include the following capabilities and funtionalities:

* The language must be flexible, and easy to use and implement.

* The language structure must allow source code and data to be easily
maintained and modified.

* The language must be able to represent the physical description (data)
and the behaviour (functions) of the controls for home products.

* The language must support present and future home automation
applications (see Section 2.1).

Page 3

3.0 OBJECT-ORIENTED HETHODOLOGY

3.1 Introduction

3.1.1 Methodologies For Software Development

Methodologies for software development came into being in the 1970s. Two
events responsible for this were the arrival of third generation languages
and the development of large software projects (military and space
programmes).

By the early 1980s, three methodologies were developed (Harmon, 1992):

* Structured Methodology (SM): In this methodology, a program is divided
into a number of processes with each process containing input, function
and output. This methodology is also known as functional decomposition. * Entity Relationship (ER): This methodology was developed to deal with
database applications. In this methodology, database entities (data
structure) are analysed. * State-Transition Model: This methodology was designed for engineering
systems and found to be useful in real-time applications. In this
methodology, the focuses are on events and the responses.

By the late 1980s. the SM methodology was enhanced to include the ER and
state-transition models. This enhanced SM methodology was accepted and used
as a basis for software development for large projects.

Enhanced SM methodology is process-oriented and step-by-step. The SM
analysis phase is about what an application will be doing. The SM design
phase is about how the application will be implemented.

The automation of software development methodologies has been attempted by
many software companies. The end products are known as CASE (Computer-Aided
Software Engineering) tools.

Over the past few years, the popularity of object-oriented programming
languages has started a new trend in software development methodology.
Objects are being increasingly used in all phases of software development:

* Object-oriented analysis (CASE tools) * Object-oriented design (CASE tools) * Object programming (C++, Smalltalk, etc.) * Object storage and sharing (OODBMS e.g., Objectstore).

3.1.2 The Lifecycle of Software Development

The lifecycle of software development consists of four phases. Each phase
has its own goals and outputs. The four phases are (Booch, 1991):

* Analysis: Analysis of the problem. * Design: Creating a solution based on the analysis. * Evolution: A series of incremental prototypes that lead to the final
implementation.

* Modification: The process of maintaining and enhancing the final
prototype to meet users demands.

The analysis phase begins with an attempt to understand the problem. This
is normally done by having discussions with the client. The early product
of this phase is a statement of the problem describing what the system is
trying to achieve. From this description, a model of the problem is
constructed and communicated to the client.

Page 4

Large and complex problems must be broken down into a number of subproblems.

The design phase is the process by which the model(s) of the problem are
solved. It begins by studying the model with the aim of developing
mechanisms which will provide the foundation for the implementation of that
system.

The evolution phase of a system is performed by programmers. The process
involves the incremental production of a series of prototypes by coding and
testing each prototype separately. These prototypes will evolve into a
final system.

The modification phase involves changes to the program ranging from fixing
bugs to adding new features to the system.

3.1.3 Conventional and Object-Oriented Programming Languages

There are three fundamental aspects of software programming: data, process
and control. Data is an attribute which is operated on by the process
(algorithms, operations, rules etc.). Control is the condition from which
the process will be performed.

In a conventional programming language (e.g., FORTRAN, C, Basic COBOL, etc.)
the task of a programmer is to firstly define data structures, then write a
set of procedures to act on the data structures, and lastly link the
procedures and the input data together to form an executable program.

The characteristics of the conventional approach are that:

* Fundamental building blocks are built using algorithms. * The approach is procedure oriented. * One is modelling a mathematical process. * The emphasis is on the procedures, not the data structures. * The program execution is a sequence of procedures acting on data.

Object-oriented programming deviates markedly from conventional programming.
In an object-oriented programming language (e.g., Smalltalk, C++ etc.) the
task of a programmer is to define objects then write a set of messages for
the objects, i.e., messages operate on objects. Computer programs are
collections of discrete objects and messages.

The nature of the object-oriented model is that:

* Objects are used as fundamental building blocks of a program. * Objects are constructed to represent physical models of the real world. * There is equal emphasis on the data and procedures. * Program execution leads to a physical model simulating the real world.

Object-oriented programs are often smaller than conventional programs.
Wybolt (1990) reported that reimplementing a C program in C++ reduced the
code by about 4-5 times. This implies that it requires less time to develop
and maintain. Coupling this with the ability to reuse both code and designs
will lead to reduction in software development cost; reduction in software
maintenance cost; and better response to user requirements.

This is important as the costs of software development and maintenance have
not declined at the same rate as hardware costs. Due to reusability,
however, software products could become much more cost-effective.

Page 5

Object-oriented programming has been used for the last 25 years. During the
last few years, the combination of affordable hardware and the availability
of comprehensive object-oriented tools has resulted in global acceptance of
the technology. The brief history of object-oriented programming is shown
below (Sigs Publications, 1992):

Year Event

1967 Simular-67 was developed
1972 Smalltalk-72 was developed
1980 Smalltalk-80 was released
1983 Object-oriented Pascal was developed
1984 Objective-C was created
1985 C++ was created
1989 Object Management Group was founded

3.2 Fundamental Concepts

3.2.1 Class and Object

An object has a range of abstractions which describe essential features
distinguishing it from other objects. An object is embedded with data
(attributes) and methods (operations). An attribute is an inherent
characteristic of an object. An attribute normally has a name, type of
data, and default value associated with it. A method is a procedure or
function which is invoked when the object receives a message under the name
of that method. A method performs a number of functions including:

* Manipulating the object's attributes (in response to a command). * Causing another message to be sent to other objects (in response to a
command). * Outputting data (in response to a query).

Each object has state, behaviour, and identity.

A class is a set of objects which share a common structure and a common
behaviour. Classes are related to one another via inheritance relationships
(Booch, 1991). An instance of a class is an object. All instances of a
class have the same methods. For example, a number of polygon objects
(e.g., a Square, a Triangle, a Rectangle) can be abstracted into a single
class called Polygon as described below:

Class Name: Polygon
Attributes: Vertices

Colour
Operations: Draw

Move

Table 1 shows another example of classes and objects. Classes of Animal,
Mammal and Rabbit are create'd to describe general characteristics of any
animal, any mammal and any rabbit. Object Bunny is used to describe a
specific rabbit at any given instance. Note that an instance has real
values. These are known as instance variables.

The word object has been used to describe both class and instance.
Generally, the context of use defines which meaning applies.

Page 6

In object-oriented applications, an application domain is modelled as one or
more objects. The active properties of the physical process are modelled as
states of objects. An object has a state associated with it at any point in
time. States are altered by internal methods upon receiving messages.

- - - - --

I ANIm I

I Colour I
I Blood I
I I (Bunny) I -- Imovement=hopI
(RABBIT 1 (colour=vhiteJ
lRun to food((blood=varm 1
I I I I
Classes Instance

Table 1 Objects Hierarchy

3.2.2 Messages

A message is a means of communication between objects. It is a foundation
for object-oriented programming (OOP). It starts an operation by invoking
an object's methods. An interesting feature of OOP is the ability of the
same message to produce different operations depending the type of the
objects it is sent to. For example the message print will produce different
outputs for the first object which is a matrix printer and for the second
object which is a laser printer.

3.2.3 Other Features of The Object Model

Object-oriented programming allows computer programmers to better represent
real-world objects in a computer. This capability enables programmers to
write programs in a more natural manner. Other major features are discussed
below:

Abstraction. An abstraction denotes the essential characteristics of an
object that distinguish it from all other kinds of objects (Booch, 1991).
Abstractions focus on the external view of objects. In C++, for example,
this external view can be implemented by using the keyword 'public'. An
abstraction makes it easier to understand an object since it does not show
the details of the object.

Encapsulation (Information Biding). Think of an object as a capsule which
contains its data and procedures. The data can only be manipulated by the
procedures within the object. The input to an object will be through a
program sending messages to it. The outputs will be the changes in its data
values.

Page 7

Encapsulation hides the internal view of an object. In C++, for example,
this internal view can be implemented by using the keyword 'private'.
Encapsulation means that data and methods are hidden within its class
structure. Encapsulation reduces accidental access to data.

Reuse Of Class Libraries. This is one of the most significant benefits of
object-oriented programming. Being able to reuse the code will make
software development much more productive, allowing programmers to develop,
maintain and enhance programs in much less time. Once objects are
developed, all a programmer needs to do is to decide what messages will be
sent to which object.

The successful reuse of class libraries depends on the analysis, design, and
implementation of the classes. An uncontrolled, arbitrary design of classes
may result in them not being reusable. An example of non-reusable classes
is when they are based on deep and complex hierarchies. Flatter hierarchies
will enable economical software modifications.

Polymorphic Uessages. tPolymorphismr is a Greek word meaning 'having many
shapes'. In this context it is the ability for the same message to produce
different operations depending on the type of object it is sent to. This
may prove useful for home automation applications as it enables the same
message to perform various operations for different applications.

Inheritance. A class inherits data and methods from its parent classes
(superclasses). Table 1 shows the principle of inheritance hierarchy. The
hierarchy begins with class Animal which contains data (movement). Class
Mammal, a sub class of class Animal, inherits all characteristics from class
Animal. Thus, class Mammal contains data (movement, colour and blood).
Class Rabbit, which is a sub class of class Mammal, inherits all
characteristics from Animal and Mammal. Thus, Rabbit contains data
(movement, colour and blood) and methods (e.g., run from loud noise).

Bunny, an instance of class Rabbit, inherits all characteristics from
Animal, Mammal and Rabbit. Thus, object Bunny contains data (movement,
colour and blood) and method (run from loud noise). However, unlike the
classes above it, the attributes of object Bunny have been given values.

3.3 Booch*s Methodology

3.3.1 Introduction

According to Booch (1991) "the process of object-oriented analysis (OOA) and
object-oriented design (OOD) is neither top-down nor bottom-up, but
round-trip gestalt. The process of the round trip gestalt is best described
as incremental and iterative." This concept of round trip gestalt is the
foundation of analysis and design. The products of this process are:
classes and objects, their states, behaviours, and relationships. The
activities of analysis and design are shown in Table 2. As shown, although
each analysis and design involves the same activities, each views the
activities differently.

3.3.2 Identifying Classes and Objects

This activity aims to discover the classes and objects that form the
vocabulary of the problem domain. The starting point is looking at what the
system is trying to achieve; in other words, the function of the system.
Classes and objects which form the domain problem are named and their
operations noted. This is sometimes known as domain analysis.

Page 8

The process involves talking to both users and domain experts to understand
the nature of the problem. Once the problem is fully understood, classes
and objects can then be named through the process of abstraction.

3.3.3 Identifying the Semantics of Classes and Objects

During this activity, the meaning of the classes and objects will emerge.
This is normally done by looking at each object in detail and writing down
all that is known about the object. These are classified into object
attributes and object functions. Normally, both static and dynamic
attributes and functions are noted. The main outputs from this activity are
class specifications. A class specification lists the essential aspects of
a class in text format.

This takes longer than identifying classes and objects and may involve
iterations. Classes and objects may be refined during this activity.

3.3 .4 Identifying the Relationships Between Classes and Between Objects

In this activity, one needs to find out how objects and classes relate to
each other and how they work together to solve the problem. Two questions
to be answered during this activity are:

* How do these objects relate? * What messages are sent between these objects?

The design phase of this activity may involve prototyping of various models.
Again, classes and objects will be refined during this activity.

3.3.5 Implementing Classes and Objects

This activity is for the design phase only. The activity looks at how
classes and objects will be represented using an OOP. At this stage,
specifications of classes and objects will be sought.

At this point the iterative process is used by going back to the first
activity and looping back and forth. That is, the design process is
repeated; however, it now focuses on the internal structures (low-level
abstractions) of classes and objects.

3.3.6 Booch Notation

Booch notation consists of (Booch, 1991; Vilot, 1990):

* Class diagram * Category diagram * State-transition diagram * Object diagram * Timing diagram * Module diagram * Process diagram.

These diagrams express the logical and physical views as well as the static
and dynamic semantics of the system. Table 2 illustrates class, object,
state transition, timing diagrams, and relationships between classes.

A class diagram shows classes and their relationships. In the initial stage
of OOA, at a high-level of abstractions, class diagrams are drawn to capture
the problem domain. At this stage, class specifications are not yet
developed. A class diagram shows how classes interact with one another.

Page 9

Relationships between classes are shown on the class diagram by various
lines connecting class icons. A number of relationships can occur between
classes. The most important ones are:

* Inheritance (kind-of) relationship: a class inherits data and
operations from its parent classes. . . * Composition (part-of) relationship: A connection between a pair of
classes of different hierarchy. * Instantiation relationship: A connection between a class and its
object.

A state-transition diagram shows the dynamic behaviour associated with
classes. The diagrams show the state space of a class, a transition from
one state to another.

An object diagram shows an instance of a class and object messages. The
purpose of an object diagram is to show the dynamics of the system.

A timing diagram complements an object diagram with information about events
and timing of operations of the objects.

Page 10

ANALYSIS AND DESIGN

1. Identifying the classes and objects at a given level of
abstraction.

2. Identifying the semantics of these classes and objects.
3. Identifying the relationships among these classes and

objects.

DESIGN

1. Implementing these classes and objects.

, , r Pet ' '-. I
class

e. -e-
/ -. t

f' People ! / ' . class

Felix object

Part of relationship
-Kind of (inheritance) relationship ----- >Instantiation relationship

CLASS AND OBJECT DIAGRAM

event
State-1 State-2

STATE TRANSITION DIA(;RBn

object 1

object 2

operation

7 operation
I

Time -->
TIMING DIAGRAM

Table 2 BOOCE'S lIETBODOLOGY (Booch, 1991)

Page 11

3.4 Rumbaugh's Methodology

Rumbaugh's Object Modelling Technique (OMT) (Rumbaugh et al., 1991) is
probably the most comprehensive methodology proposed. Essential to the OMT
concept is the meaning of "models". A model is defined as an abstraction
(essence) of something which is created to understand a problem before
implementing a solution. Often, models are built t o provide visualisation
as a means of communicating with customers.

The OMT methodology uses three views of a system (object model, dynamic
model and function model) to model an application domain. The methodology
involves four stages of development (analysis, system design, object design
and implementation). Thus, the OMT methodology has two dimensions: view
and stage of development.

The object model is the most important of the OMT views. The object model
provides a means of decomposing a problem into classes of objects. The
object model provides the following outputs:

* Object classes * Attributes and operations of object classes * Object diagrams * Relationships between classes.

An object diagram is a graphic notation for representing instances, classes
and their relationships. Object class diagrams are used to describe the
model of the problem. Object instance diagrams are used to provide examples
of the objects in actions.

A graphic notation of an object diagram is shown in Table 3. A class is
represented by a rectangle containing three regions: class name, class
attributes and class operations. Class and instance notations are shown in
Table 3. BRANZ is an instance of class Company and AED is an instance of
class Staff.

An association is a relationship between classes. A link is a relationship
between instances. Thus, a link can be seen as an instance of an
association. An association can be one-to-one, one-to-many, or
many-to-many. An example of a one-to-many association and a link is shown
Table 3.

Page 12

ANALYSIS :
1. Problem Statement
2. Object Modelling

- Identify objects and classes
- Prepare data dictionary - Identify associations - Identify attributes and links
- Organise and simplify classes via inheritance
- Verify that access paths exist for queries
- Iterate and refine the model

3. Dynamic Modelling
- Identify events between objects
- Build a state diagram
- Match events between objects to verify consistency

4. Functional Modelling
- Identify input and output values
- Build data flow diagrams showing functional dependency
- Describe functions
- Identify constraints

DESIGN:
1. Organise system into subsystems
2. Identify concurrency inherent in the problem
3. Allocate subsystems to processors and tasks
4. Choose approach for management of data stores
5 . Handle access to global resources
6. Choose the implementation of control in softvare
7. Handle boundary conditions

I Class A I I Class X I
I I I I I attributes I f I attributes I
I I I I I methods I I methods I
I I I--,--- I Inheritance

A I Class B 1 I Company I 4 - 7
S t a f f I p z i s s z 1

I
I I I I Association I I I 1 I attributes I I attributes I I attributes I I attributes I
I I I I I I I I I methods I I methods I I methods I I methods I

I
I I I I I--,--- I I I I I

I I I I
ORJECT MODEL

event
State-l State-2

I)-C MODEL

data name
Process-1-------->Process-2

FUNCTIONAL MODEL

Table 3 RIRIBAUGH' S UbTlODOLOGY (Rumbaugh et al., 1991)

I

Page 13

3.5 Summary

3.5.1 Basis of Object-Oriented Methodology

Object-oriented methodology (OOM) applies the concept -of looking at the
world in terms of objects, to the life-cycle of the development of a
computer program. OOM is independent of language. An 0OM contains both
static information (classes, instances, their relationships) and dynamic
information (instances, messages), as shown in Table 4.

Object-oriented analysis (OOA) is the process of identifying classes and
objects that form the problem domain. Object-oriented design (OOD) is the
process of creating classes and objects and implementing them using an
object-oriented programming language. The outputs of OOM include
specification, documentation and models of ciasses and objects and their
states, behaviours, and relationships which are used by programmers to
implement a solution.

3.5.2 Comparisons of Booch and Rumbaugh Methodologies

The methodologies are similar at the concept level in that they agree on the
meaning of OOA and OOD.

The activities of Booch's methodology are the same for both OOA and OOD.
However, each views the activities differently. OOA is more concerned with
high-level abstractions, whereas OOD is more about low-level abstractions.
The activities are not top-down nor bottom-up, but round-trip gestalt; that
is, incremental and iterative development.

The OOA and OOD activities of Rumbaugh's methodologies are quite different.
OOA is concerned with modelling of the problem, whereas OOD stresses the
implementation. The activities can be regarded as a top-down approach.

I Class A I I Class X I
I I I I 1 attributes I 1 attributes 1
I I I I I methods (I methods I
I n

(Class B I I Class C I
I I 71 Class Y I T class z I I I I I I I I I attributes I I attributes 1 Relationships I attributes I I attributes I

I I I I between classes I I I I I methods I I methods I I methods I I methods I
I I I I I I I

7
I I-

IInstance C-11 Uessages I Instance Y-1 I
I values of I between I values of I
I attributes I<--------------->I attributes I
I I instances I I

Table 4 Basis of An Object-Oriented Methodology

Page 14

4.0 APPLICATIONS LANGUAGES FOR HOHE AUTOUATION

This section reviews the use of object-oriented technology by two leading
home automation systems, Smart House and CEBus, in their implementation of
their applications languages.

The application language of Esprit Home System (Home Systems Specification,
1991) is similar to that of the CEBus. Other systems such as D2B and the
Japanese HBS (Parks Associates, 1990) are using command tables in their
implementation of the applications languages.

It should be noted that these protocols are still evolving and that the two
protocols reviewed here should provide a good coverage for the use of
object-oriented technology in home automation applications.

ISO/IEC/JTCl is considering applications languages from a number of home
automation systems, including: Batibus (France), CEBus (USA), D2B (The
Netherlands), ESPRIT HS (Europe), EIBus (Germany), HBS (Japan), and Smart
House (USA). It is expected that evaluation will not be completed until
late 1994.

4.1 Smart House Applications Language

4.1.1 Background

Smart House is a new system for the distribu tio on and con ~trol of residential
energy and communica~ions that enables centralised control of: security,
safety, energy management, entertainment, lighting control, and
communications (Dechapunya, 1992).

The Smart House applications language plays a key role in the implementation
of integrated applications in a Smart House. The applications language
allows manufacturers to develop home automation applications by writing
software applications which will allow different products from various
manufacturers to work together. The language is used for end-to-end
communications between appliances.

The applications language used in the Smart House system is object-oriented
(Smart House Applications Language Guide, 1992). The Smart House
applications language is embedded in home appliances. These appliances,
attached to Smart House networks, communicate by sending messages to one
another. Appliances can also interact with the system controller.

The environment of the Smart House applications language contains (Smart
House Applications Language Guide, 1992):

* Smart Bouse Object Hierarchy, * Smart House Object Specifications, * Smart House Applications Function Tables.

4.1.2 Language Environment

Smart House Object Hierarchy. The Smart House object hierarchy is shown in
Table 5. It illustrates the hierarchial structure of Smart House objects
used in home automation applications. The inheritance is based on a single
hierarchy of classes, where all classes have a common ancestor class named
object. Dearle (1990) discusses the advantages and disadvantages of single
hierarchy and multiple peer hierarchy.

Page 15

The class Object is a common ancestor class (root class). It is used to
provide common attributes and messages for all other instances of objects to
inherit.

Smart Eouse Object Specifications. The attributes and operations of Smart
House objects are described in the Smart House Object Specifications. Each
object specification contains:

* General section, * Instance Variables section, * Methods section.
An example of Smart House object specification for object Control is shown
below:

GENERAL.
Class Name: Control

INSTANCE VARIABLES
controlstate The state of control. The state can

be inactive, waiting, or busy.
HETBODS
reset Resets the state of control to "waitingn
getcontrolstate Replies with the state of the control

The Instance Variables section lists the instance variables of an object.
There are two categories of instance variables: static and dynamic. Static
variables are fixed by manufacturers. Dynamic variables are subjected to
change due to messages received.

The Methods section lists the operations of an object. The methods perform
operations on the instance variables of the object. There are two
categories of operations: command and query.

Smart Eouse Applications Function Tables. An application is implemented by
modelling appliances as units. Each unit consists of one or more panels.
The function of each specific applications panel is listed in the Smart
House Applications Function Tables.

Developing Applications. Once the model of an application is finalised, the
next step is for a product engineer to code messages (command/query) for
passing between the objects to perform the required functions.

Page 16

Table 5 Smart House Applications Language Object Tree
(Smart House Applications Language Guide, 1992)

Page 17

4.2 Common Application Language

4.2.1 Background

CAL (Common Application Language) is an applications language of a CEBus
home automation standard (Dechapunya, 1992).

CEBus is a local area network for the home. CEBus allows two-way
communication between user and appliance, and between appliance and
appliance. The standard is designed to be a comprehensive protocol and
language for a number of devices. CEBus products will be able to talk to,
and control one another. Products can be classified into system products
and user products. System products are those which are not visible to the
users. An example of a system product is a router. A router connects
various physical media together, to allow a product connected to one medium
to communicate to another product on another communications medium. A
router collects data on one medium and puts the data onto another medium.

4.2.2 Language Environment

CAL is a language for interproduct communication. It is used by one CEBus
device to communicate with another CEBus device. Its architecture is based
on the Application layer of the ISO/OSI (Section 2.1) network model. The
committee that developed CAL is the biggest CEBus committee. The December
1990 version of CAL has been adopted as an interim standard. The language
will require continuous updating as new products and new applications come
onto the market.

The design of CAL is based on the object-oriented paradigm. It contains
syntax and vocabulary to allow devices to process and communicate commands
and status with one another. It is designed to be broad and flexible,
allowing products engineers many command options.

CEBus states that its CAL is object-oriented, but features such as
inheritance, which is an essential part of an object-oriented language, are
not in CAL.

According to the structure of CAL (Electronic Industry Association, 1990), a
home device has a single network address and contains one or more contexts.
A context is made up of various home automation objects. For example, a TV
set is modelled as a device which contains an Audio Process context, and a
Video Monitor context. The Audio Process context is made up of various
objects such as a Button, or a Switch for controlling the operation of the
TV. An object is modelled as collections of one or more variables that can
be accessed (read or modified) by a device on the network.

Definitions of contexts, objects, and methods are listed in Table 6. These
tables are presently maintained and updated by the Electronic Industry
Association (EIA). EIA, however, is in the process of suggesting a new
organisation to take over the CEBus home automation standard.

The manipulation of the objects' variables using CAL language is the basis
of the CEBus home automation.

The message syntax of CAL is "context object method argument". For example,
CALrs message to tell a telephone object to dial 235-7600 would be
"telephone dialer load 235-7600".

Each appliance is a node on the CEBus network. Appliances communicate by
sending CAL messages to one another. The CAL messages are bundled together
to form a packet. Packets travel from one communications medium to another
medium using links created by CEBus bridges.

Page 18

CAL CONTEXT

Audio Process Time Service Elements Environmental System
Audio Source Appliance Control System Environmental Sensors
Audio Record Communication System Air Conditioning System
Video Uonitor Answering Uachine Heating System
Video Source Intercom Information System
Video Record Telephone Security System
Tuning System Lighting System

CAL OBJECTS OF TELEPHONE CONTEXT

Switch hook
Transmitter (mouthpiece)
Dialer
Keypad

Palse
True
Test
Compare
Add
Subtract
Load
Load Number
Load-character -

CAL HETHODS

Receiver (earpiece)
Speaker phone
Ringer volume control

Store
Swap
And
Or
Xor
Not
Branch
Jump
Call

Return
Exit
Repeat
Next
Previous
Position
X-Translate
Y-Translate
Z-Translate

Build
Define
Do While
m-P
For
If Then
Swztch
While - do

USE OF OBJECT DIALER OF TELEPHONE CONTW

Uethod Name Argument Action
False Disable dialing
True Enable dialing
Load - character <Phone Number> Dial <Phone Number>

Table 6 Structure of Common Application Language
(Electronic Industry Association, 1990)

The physical paths for carrying control and communication messages are:
Powerline (PLBus); Twisted Pair (TPBus); Coaxial cable (CXBus); Infrared
(IRBus); Radio Frequency (RFBus); Audio/video system (AVBus); Fibre optics
cable (FOBus).

CAL is an open protocol, Once the CEBus standard is adopted, manufacturers
will be able to build products which incorporate CAL to allow them to
understand messages or instructions sent by other CAL compatible products.

Page 19

4.3 Summary

There are strong similarities between Smart Rouse and CAL as shown below:

Smart House Common
Application Language Application Language

Appliance Unit Device

Collection Panel
of objects

Context

Objects Button, Switch, Knob etc Button, Switch, Knob etc

Message Syntax object function messages context object method

Page 20

5.0 CLASS SPECIFICATIONS FOR HOHE AUTOUATION

5.1 The Basis

The aim of this chapter
home automation unit.
attempted using Booch's
full potential since

is to produce an object-oriented model for a basic
~nal~sis and design of the problem domain is

methodology. The methodology is not used to its
the aim of this part of the work is only to produce

hard cbpy of class descriptions for modelling home automation. Booch's
methodology is chosen because it is gaining popularity (Horstmann, 1993) and
it provides a more natural means, incremental and iterative development, of
solving a problem. Rambaugh's methodology is designed for solving large and
complex tasks such as space programs or battle control.

Smart House object specifications are used to provide a guideline for common
objects for the home automation domain.

C++ programming language is used as an early attempt to implement the model.

5.2 Application Domain

The application domain selected is a water heater. The function of a water
heater is to manage hot water for a home by implementing the control and
automation of various devices. To perform these functions, the water heater
must be able to communicate with other home automation units as well as the
householders. Essential elements required to achieve this are:

* Language: This is commonly known as an applications language. * Control Unit: The control unit contains necessary devices to allow
communication to occur. These devices or objects include controllers
and indicators.

5.3 Identifying Classes and Objects

In order to discover the classes and objects that form the vocabulary of the
water heating domain, we first consider the function of the system. The
list of tasks and devices which are used to perform the tasks is shown in
Table 7.

Tasks Devices

General management of hot water supply Unit
Panel containing control and indicator devices Panel
Power control (on/off) Button
Thermostat setting Knob
Information display Display
Fault indicator Lamp

Table 7 Devices for Modelling a Water Beater

Thus, a water heater can be modelled as a unit which contains devices which
are used for monitoring and controlling the hot water supply. The Unit,
Panel, Button, Knob, Lamp, and Display can be modelled as classes.

5.4 Specifying Attributes and Methods

The class specifications of the water heater domain are listed in Table 8.

Page 21

Class Name:
Function:
Attributes:

Operations:

Used by:
Contains:
Inherited by:
Derived from:

Class Name:
Function:
Attributes:

Operations:

Used by:
Contains :
Inherited by:
Derived from:

Class Name:
Function:
Attributes:
Operations:
Used by:
Contains:
Inherited by:
Derived from:

Class Name:
Function:
Attributes:
Operations:
Used by:
Contains:
Inherited by:
Derived from:

UaterEeaterUnit
Hanagement of a hot vater system
- model number
- unit function
- unit status
- unit address
- get model number - get unit function
- get unit status
None
WaterEeaterPanel, Display
None
None

WaterEeaterPanel
Panel for control and indicator devices
- panel function
- panel state - default panel state
- get panel function
- get panel state
- enable panel
- disable panel
Vateraeaterunit
Button, Knob, Lamp
None
None

Control
Group all classes vhich provide control
- control state
- get control state
VaterEeaterPanel
None
Button, Knob
None

Indicator
Group all classes which provide messages and display
- indicator status
- get indicator status
WaterEeaterPanel
None
Lamp, Display
None

Table 8 Class Specifications (continued on next page)

Page 22

Class Name:
Function:
Attributes:

Operations:

Used by:
Contains :
Inherited by:
Derived from:

Class Name:
Function:
Attributes:

Operations:

Used by:
Contains:
Inherited by:
Derived from:

Class Name:
Function:
Attributes:

Operations:

Used by:
Contains:
Inherited by:
Derived from:

Class Name:
Function:
Attributes:
Operations:
Used by:
Contains:
Inherited by:
Derived from:

Button
Provide on/off control
- default button position
- current button position - get default button position
- get current button position
- release button - press button
WaterHeaterPanel
None
None
Control

h o b
Used for setting thermostat
- default knob setting
- current knob setting
- minimum value
- maximum value
- get current knob setting
- set current knob setting to
- show minimum value - shov maximum value
VaterHeaterPanel
None
None
Control

Display
Display information - message - file name - display message - display contents of a file
YaterEeaterUnit
None
None
Indicator

-P
Provide fault indicator - indicator status - get indicator status
WaterEeaterPanel
None
None
Indicator

Table 8 Class Specifications (continued from page 21)

Page 23

5.5 Identifying Relationships Betveen Classes

In this activity, we see how classes are related to each other and what
messages are used to drive these classes. Two pictures are drawn to
illustrate part-of and kind-of relationships between these classes.

5.5.1 Kind-Of Relationships

Section 5.3 lists the classes which are used for controlling and monitoring.
Kind-of relationships between various classes are shown in Table 9. Knob
and Button classes are a kind-of Control class. Display and Lamp classes
are a kind-of Indicator class. This relationship is also known as
inheritance.

It can be said that a water heater unit is a type of unit and that a water
heater panel is a type of panel. Another way of saying this is that a unit
is a generic class and a water heater unit is an application-specific class.

Generic Classes Application Specific Classes

Unit
Panel

Water Heater Unit
Water Heater Panel

5.5.2 Part-Of Relationships

The essential classes required for the control and automation of a water
heater are:

* WaterHeaterUnit * WaterHeaterPanel * Control * Indicator.

These form part-of relationships between various classes used for the water
heater application. This is illustrated in Table 10. A WaterHeaterUnit is
composed of a WaterHeaterPanel and a Display. The WaterHeaterPanel has a
Knob object, a Button object, and a Lamp object. That is, each object is
part-of WaterHeaterPanel.

Consider a class Knob. The following can be said about this class:

* Knob is PART-OF a class WaterHeaterPanel * Knob INHERITS attributes and methods from Class Control.
WaterHeaterUnit and its composition is shown in Table 11.

Page 24

IControl I
I

IIndicator I --+ I
I ---+ 1

rI-7 I I r I - 7
I

I
_ I _ I

I
I%obI I Button]
I

IDisplayI
I I I I I I

Table 9 Kind-Of Relationships (Inheritance) Diagram

I WaterEeaterUnit I
I - i I

I
I
I I WaterHeaterPanel I IDisplayI

I I I
I

Table 10 Part-Of Relationships (Composition) Diagram

I WaterEeaterUnit I
I
I

I
I

I I I I WaterHeaterPanel 1 (
I I Knob Button I I
I I I I

I
I I Display I

i
I I

I
I

I
I
I

Table 11 WaterEeaterUnit and its Composition

Page 25

5.6 Representation of Classes and Objects on a Computer

5.6.1 Object-Oriented Programming Language

This Section looks at how classes and objects and their relationships for
the water heater domain will be represented on a computer using an
object-oriented programming language. The process is iterative, involving
the abstraction of classes and objects, and the messages used in the control
and automation of the water heater.

An object-oriented programming language, C++, is used in the implementation.
C++ (Atkinson and Atkinson, 1992, Borland C++ User's Guide, 1992, Borland
C++ Tools and Utilities Guide, 1992, Borland C++ Programmer's Guide, 1992,
Dearle, 1990, Vilot, 1990, Voss, 1991, Walker, 1992) was developed by Bjarne
Stroustrup at AT and T between 1979 and early 1980.

5.6.2 Representing Classes, Objects and their Relationships

Representing Classes. Table 12 shows a representation of Knob as a class
using C++.

// KNOB-CPP
// CLASS Knob DEFINITIONS

class Knob : public Control

private:
static int minvalue;
static int maxValue;
static int range;
int stepsize;
int defaultKnobSetting;
int knobsetting;

public:
Knob(int knobsettingl);

void getUinValue();
void getMaxvalue();
void getstepsize();
void getcurrentsettingo;
void setStepSizeTo0;
void setCurrentSettingTo();
void moveup();
void moveDown();

I ;
// FUNCTIONS DEFINITIONS

etc.. .
Table 12 Representing Class Knob in C++

Class Knob is encapsulated with data and methods. The power of
encapsulation of the object-oriented programming method can be shown by
rewriting the codes in Table 12 using conventional programming methods. The
program is shown below:

Page 26

struct Knob
(
static int minvalue;
static int maxValue;
static int range;
int stepsize;
int defaultKnobSetting;
int knobsetting;

1 ; ... etc ...
void getUinValue() (...)
void getMaxvalue() (...)
void getstepsize() (...)
void getcurrentsettingo (...)

The class identifier is replaced by a struct identifier. The content of
struct can only be data. This means that the data of struct can be used by
any methods anywhere in the program. This can lead to the problem of data
integrity. In object-oriented programming, the content of class can be data
as well as the methods that manipulate the data. That is, both data and
their methods are encapsulated within the specific class structure. This
results in clarity, reduction in complexity, modularity, and programming
efficiency, which in turn bring about more economical development and
maintenance of software lifecycles.

The private data (minvalue, maxvalue, range, stepsize, defaultKnobSetting,
and knobsetting) are accessible only by the methods of class Knob
(getMinValue, getMaxvalue, getstepsize, getcurrentsetting, setStepSizeTo,
setCurrentSettingTo, moveup, and moveDown). For example, the method
setCurrentSettingTo contains:

void Knob::setCurrentSettingTo()
I
char inchar[3];
getcurrentsettingo;
Label1 : ;
cout<<"\t\t Enter
gets(inchar);
if(atoi(inchar) <
(
cout<<"\t\t The
goto Labell;

the setting 10-100]:> ";

0 1 1 atoi(inchar) >= 100)
new setting is out of range\nn;

The above C++ representation shows that knobsetting, a private datum (using
C++ private specifier) of class Knob, can only be manipulated by Knob's
methods.

The interface to class Knob is via the public part of the class. Only
method declarations are shown here. These method declarations can be
thought as the abstractions of the class. The method definitions are the
details of how the class Knob behaves.

Tables 13, 14, and 15 show class representations in C++ of Button, Lamp, and
Display, respectively.

Page 27

/ / BUTTON.CPP
// CLASS Button DEFINTION

class Button : public Control
(
private:
int buttonPosition;
int defaultButtonPosition;

public:
Button(int buttonPosition1);

void getDefaultPosition();
void release();
void press();
void getButtonPosition();

1;
// FUNCTION DEFINITIONS

etc.. .
Table 13 Representing Class Button in C++

// LAUP.CPP
// CLASS Lamp DEFINITIONS

class Lamp : public Indicator
f

/ / FUNCTION DEPINITIONS

etc.. .
Table 14 Representing Class Lamp in C++

/ / DISPLAY.CPP
// CLASS Display DEPINITIONS

class Display : public Indicator
(
public:
Display();
void messageReport(char fileNamerl21);
void messageDisplay(char message[22]);

/ / PUNCTION DEPINITIONS

etc.. .
Table 15 Representing Class Display in C++

Page 28

Representing Objects. An object is an instance of its class. Table 16
shows a few examples of home automation objects. As shown, WHUnitA is an
instance of class WaterAeaterUnit. The main difference between
WaterHeaterUnit and WHUnitA is that WaterHeaterUnit contains static
structure of data and methods. WHUnitA contains dynamic structure with
values given.

VaterEeaterUnit VBUnitA("El", disabled, released, 0);
YaterEeaterPanel VBPanelA;
But ton ButtonA;
Knob KnobA;

Table 16 Representing Objects in C++

Representing Inheritance Relationships. Table 9 shows kind-of relationships
of base class Control with sub classes Knob and Button, and base class
Indicator with sub classes Display and Lamp. These relationships between
classes can be modelled in object-oriented programming languages by
inheritance. The C++ representations of Control and Indicator are shown in
Table 17A and Table 17B, respectively. Classes Knob, Button, Display and
Lamp inherit from their parent classes by the use of "public" keyword as
shown below:

class Knob : public Control (... j;
class Button : public Control (...);
class Display : public Indicator (...);
class Lamp : public Indicator (...);

Page 29

// COrn0L.E
// (C) Copyright 1992 by AHD

tifndef CONTROL
#define -CONTROL
#include-<iostream. h>

// CLASS Control DEFINITION

class Control

private:
int controlstate;

public:
Control() { controlstate = inactive; cout << "Control Initialised";)

virtual void reset() [controlstate = inactive;)
virtual void isControlInactive();
virtual void isControlWaiting();
virtual void isControlBusy();
virtual void getcontrolstate();

1;
// FUNCTION DEFINITIONS

Table 178 Representing Inheritance in C++

// CLASS Indicator DEFINITION

class Indicator
[
public:
int indicatorstatus;

Indicator();
virtual void getIndicatorStatus();

I ;
// FUNCTION DEFINITIONS

Table 17B Representing Inheritance in C++

Page 30

Representing Composition Relationships. The C++ representation of the
WaterHeaterUnit is shown in Table 18. The WaterHeaterUnit is composed of
objects WHPanelA and DisplayA. The class WaterHeaterUnit contains: data
(unitAddress, modelNumber, unitFunction), objects (WHPanelA, DisplayA) and
methods (getFunction, getModelNumber, getunitstatus).

Table 10 shows the composition of ~ater~eater~anel. It shows that the
WaterHeaterPanel contains various objects for controlling and indicating.
This composition can be modelled in object-oriented programming languages by
building a class which contains objects of other classes.

The C++ representations of the WaterEeaterPanel is shown in Table 19. As
shown, the class WaterEeaterPanel contains: private data (panelFunction,
defaultpanelstate, panelstate), private objects (ButtonA, KnobA, and LampA),
public methods (reset, getPanelFunction, getpanelstate, enablepanel,
disablepanel). Because class WaterEeaterPanel contains objects ButtonA,
KnobA, and LampA, it has automatic access to all of the methods of these
objects.

/ / YATgRBBATERUNIT.CPP
// CUSS WaterHeaterUnit DEFINITIONS

class WaterEeaterUnit

public:
Panel VBPanelA;
Display DisplayA;

char * modelNumber;
int unitPunction;
char * unitAddress;
VaterBeaterUnit(char * unitAddress1,
int panelStateA, int buttonPositionA, int knobSettingA);

void getPunction0;
void getHodelNumber();
void getUnitStatus0;

1;
/ / FUNCXION DEFINITIONS

etc.. .
Table 18 Representing Composition of Vateraeaterunit in C+i

Page 31

// VATIBWEATERPANEL.CPP
// (C) Copyright 1992

const int enabled = 0;
const int disabled = 1;

// CLASS Vateraeaterpanel DEFINITION

class Vater~eater~Ael
(
private:
int panelPunction;
int defaultpanelstate;
int panelstate;

Button ButtonA;
Knob KnobA;
Lamp -PA;

VaterEeaterPanel(int panelstatel, int buttonPositionA, int knobSettingA);
void reset() (panelstate = defaultpanelstate;)
void getPanelPunction();
void getpanelstate();
void enablepanelo;
void disablepanel();

// Accessing ButtonA Object
void getControlStateButton() (ButtonA.getControlState();)
void getDefaultPosition() (ButtonA.getDefaultPosition();)
void =elease() (~uttonA.release();)-
void press() (ButtonA.press();)
void getButtonPosition() (ButtonA.getButtonPosition();)

// Accessing KnobA Object
void getcontrolstateknob() (KnobA.getControlState();)
void getUinValue() (KnobA.getUinValue();)
void getUaxValue() (KnobA.getUaxValue();)
void getstepsize() (KnobA.getStepSize();)
void getcurrentsettingo (KnobA.getCurrentSetting();)
void setStepSizeTo() (KnobA.setStepSizeTo();)
void setCurrentSettingTo0 (KnobA.setCurrentSettingTo();)
void moveUp() (KnobA.moveUp();)
void moveDown() (KnobA.moveDovn();)

// Accessing LampA Object
void getIndicatorStatus() (LampA.getIndicatorStatus();)

I;

// FUNCPION DEFINITIONS

etc.. .

Table 19 Representing Composition of Vateraeaterpanel in C++

. 6 . 3 Representing Message

Page 32

S

In C++, the public functions can be used to access the private data which
are encapsulated within the objects. The public functions are said to be
the interfaces between a program and the objects. Thus, messages (command
or inquiry) to the objects can be represented using these public functions.

The C++ mechanism for sending a message "messageToObject1" to "objectl" is
"objectl.messageTo0bjectl". For example, if it is required to set a
thermostat setting for a water heater unit to 100, the steps involved would
be:

* an object KnobA is created from a class Knob; * a message setToPosition(100) i s then sent to KnobA; * the method setToPosition performs an operation on variable
currentPosition; * currentPosition is set to 100.

Table 20 shows examples of sending messages.

// Create an object

Waterheaterunit WEUnitA("Hln, disabled, released, 0);

// Get System Status

// Turn On the Water Heater system

// Turn Off the Water Heater system

WEUnitA.release();

// Thermostat Setting

VBUnitA.setCurrentSettingTo();
I

Table 20 Representing Messages in C++

Page 33

5.7 Summary

Using C++ as an early prototype, a model of a water heater system has been
developed using Booch's methodology. It is modelled as a Waterlieaterunit
containing a WaterHeaterPanel and a Display. The Waterheaterpanel contains
a Button, a Knob, and a Lamp.

* The iterative process of doing bit-by-bit analysis, design and
implementation is a suitable mechanism for modelling home automation
objects.

* C++ shows promise as an object-oriented language for implementing a
class library of a home automation domain.

* Understanding the concept of an object-oriented approach makes it easier
to implement the problem using an object-oriented programming language.

* The power of C++ expressiveness means that, for a relatively small
project, object-oriented design can be done using the C++ language.

Page 34

6.0 CONCLUSIONS

6.1 Object-Oriented Approach

Object-oriented programming is a natural consequence of evolution in
programming languages. The results are modularity, reusability, and
programming efficiency in developing and maintaining software code.

The object-oriented approach provides a suitable means of representing the
attributes and behaviours of the physical controls for home products. A
problem is modelled as collections of co-operating objects. Each object is
an instance of a class. Classes are related to one another via inheritance
and composition.

This makes it a natural process to model home automation using an
object-oriented paradigm.

The encapsulation of data and methods within an object enables the concept
of interoperability to be easily implemented. An appliance can be modelled
as an object with its properties and its interactions with the world
encapsulated in the chip embedded within the appliance. Each chip can be
implemented using different processors. The implementation of the
application language can be tested locally by its developer, since the
object is self-contained with its data structures and methods to operate on
the data. Thus, an appliance from one manufacturer will be able to work
with another appliance from another manufacturer. Each manufacturer does
not need to know details of the internal representation of data and methods
of each appliance. The only thing required is the interface (messages) for
each appliance.

Formal OOA and 000 are designed for large and complex projects such as
aerospace and military projects. For smaller projects, parts of OOA and OOD
may only be required for software development. This is especially so if an
expressive language such as C++ is used. In such cases, you may still need
notation to provide roadmaps for the programs.

At present, no existing object-oriented methodologies are accepted as an
industry standard. It is expected that these methodologies will undergo
further experimentation and development. The starting point is to
standardise the design notations (existing notations from various
methodologies are complex and quite different).

6.2 Object-Oriented Programming Language

Before any attempt to learn an object-oriented language, the concept of the
object-oriented paradigm should be understood first. That is, the
programming language should be learned with an object-oriented viewpoint.

6.3 Further Work

This work is a feasibility study of object-oriented technology. It is clear
that object-oriented technology provides a natural means for developing
software for home automation applications. The work has produced high-level
abstractions (names and functions) of classes for a water heater domain.

The output from research in 1993-1994 will include classes to provide a
general framework and environment for home automation applications
including: automation of appliances and lights, energy management,
communication and information, entertainment, convenience, security and
safety, and environmental control. Real-world applications for the next 3
years will include prototyping applications for control of appliances and
lights, HVAC/energy management, and environmental monitoring and control.

Page 35

REFERENCES

Atkinson, L., and Atkinson, M. 1992. Using Borland C++ 3 (2nd Edition).
Que Corporation, Carmel, Indiana, pp. 1158.

Booch, G. 1991. Object-Oriented Design with Applications. Redwood City,
California: Benjamin/Cummings. pp. 580.

Booch, G., and Vilot, M.J. 1992. The structure of C++ programs. C++
Report, October 1992, pp. 20-22.

Borland C++ User's Guide 1992. . Borland International, Inc., Scotts Valley,
California.

Borland C++ Tools and Utilities Guide 1992. Borland International, Inc.,
Scotts Valley, California.

Borland C++ Programmer's Guide 1992. Borland International, Inc., Scotts
Valley, California.

Dearle, F. 1990. Designing Portable Application Frameworks For C++. The
C++ Journal, Summer 1990, pp. 55-59.

Dechapunya, A.H. 1992. Standards For Communications Networks In The Bome.
Building Research Association of New Zealand, Miscellaneous Report,
Judgeford, New Zealand.

Electronic Industries Association 1990. Draft Common Applications Languages
(CAL) specification as of 18 December 1990, Washington, D.C.

Harmon, P., 1992. Object-Oriented Methodologies: Part 1, Object-Oriented
Strategies, Volume 2, Number 4, California, pp 1-16.

Home Systems Specification, 1991. ESPRIT-HS Consortium, Eindhoven, The
Netherlands.

Horstmann, C.S., 1993. Two leading object-oriented design tools. C++
Report, Vol. 5, No. 1, January 1993, pp. 62-67.

Parks Associates, 1990. An Overview of Worldwide Home Automation Standards,
Parks Associates, Dallas, Texas.

Rumbaugh, J., Blaha, M., Premerlani, P.E., and Lorenson, W., 1991.
Object-Oriented Modelling and Design. Prentice Hall, Englewood Cliffs, NJ,
pp. 528.

Sigs Publications, 1992. Happy 25th Anniversary Objects. New York, NY.

Smart House Applications Language Guide, 1992. SH-1401, SMART HOUSE L.P.
Upper Marlboro, MD.

Vilot, J.M. 1990. Using Object-Oriented Design and C++. The C++ Journal,
Fall 1990, pp. 7-14.

Voss, G. 1991. Object-Oriented Programming: An Introduction. Osbourne
Mcgraw-Hill, Berkeley, California.

Walker, G. 1992. Why the choice must be C++. The C++ Journal Vol. 2 No.
1 1992, pp. 52-65.

Wybolt, N. 1990. Experiences with C++ and object-oriented software
development. 1990 Usenix C++ Conference, pp.. 1-9.

Page 36

Abstraction. The essential characteristics of an object that
distinguish it from other objects.

Class. A set of objects which share a common structure and a common
behaviour. An instance of a class is an object.

Encapsulation. The putting together of data structure and the methods
within its class structure.

Inheritance. A relationship among classes. A class inherits data and
methods from its parent class.

Messages. A means of communication between objects. It is a foundation
for object-oriented programming by which it starts an operation by
invoking an object's methods.

Object. An object is an abstraction which describe essential features
of a thing. An object is embedded with data and methods.

Object-oriented programming language. Allow computer programmers to
represent real-world objects in a computer.

Object-oriented Analysis. The analysis phasebegins with an attempt to
understand the problem. The early product of this phase is a statement
of the problem describing: what is the system is trying to achieve?;
what is the function of the system?.

Object-oriented Design. Creating a solution based on the
Object-oriented analysis.

Polymorphic. Ability for the same message to produce different
operations depending on the type of objects it is sent to.

1 1993
Object-oriented methodolo

1
I

gy for home automation ap

THE RESOURCE CENTRE FOR BUILDING EXCELLENCE

BRANZ MISSION

To promote better building through
the application of acquired howledge,

technology and expertise.

HEAD OFFICE AND
RESEARCH CENTRE

Moonshine Road, Judgeford
Postal Address - Private Bag 50908, Porirua

Telephone - (04) 235-7600, FAX - (04) 2356070

REGIONAL ADVISORY OFFICES

AUCKLAND
Telephone - (09) 524-7018

FAX - (09) 524-7069
290 Great South Road

PO Box 17-214
Greenlane

WELLINGTON
Telephone - (04) 235-7600

FAX - (04) 2354370
Moonshine Road, Judgeford

CHRISTCHURCH
Telephone - (03) 663435

FAX - (03) 668-552
GRE Building

79-83 Hereford Street
PO Box 496

