LAS BUI

UDC

Copy 2 NO.25 (1990)

BUILDING RESEARCH ASSOCIATION OF NEW ZEALAND

BRANZ STUDY RI CI/SfB (J4) 624.042.41

DESIGNING MULTI-STOREY BUILDINGS FOR WIND EFFECTS

PREFACE

The Building Research Association of New Zealand (BRANZ) commissioned this work as part of its programme to establish acceptable serviceability criteria for buildings. The views represented are not necessarily those of the Association.

ACKNOWLEDGEMENTS

The authors wish to gratefully acknowledge the various contributions of the following persons during the course of this research programme:

Mr S F George; Wass Buller and Associates Ltd Miss J Jenner; WORKS Central Laboratories Mr C MacKenzie; Holmes Consulting Group Ltd Dr A G Park and Mr P M F Yong; Clendon, Burns and Park Ltd

This report is intended for structural research engineers and designers.

DESIGNING MULTI-STOREY BUILDINGS FOR WIND EFFECTS

BRANZ Study Report

P.D. Cenek J.H. Wood

REFERENCE

Cenek, P.D. and Wood, J.H. 1989. Designing Multi-Storey Buildings for Wind Effects.

KEYWORDS

Buildings; Building Codes; Dynamic Analysis, Serviceability Criteria; Structural Parameters; Wind Loading; Wind Motion

ABSTRACT

Available calculation methods for predicting the action of along-wind, across-wind and torsional forces on buildings have been reviewed and a comparison made between the response obtained by these methods and by assuming wind loads specified by various codes, including the current Australian (1989) and Canadian (1985) codes and the proposed revision to the New Zealand code.

The work includes a review of the current limits for building interstorey drifts and criteria for occupant comfort.

Design guidelines have been prepared giving classification procedures for identifying wind sensitive structures, and methods for estimating the wind motion displacements and accelerations. Worked examples are included to illustrate the recommended methods for typical tall buildings.

CONTENTS

	page
INTRODUCTION	1
Background	1
Objectives	2
Project Scope	3
BACKGROUND TO WIND LOADING	4
Introductory Comments	4
Along-Wind Loading	5
Across-Wind Loading	6
Torsional Loading	6
Combined Wind Loading	7
DERIVATION OF DYNAMIC ANALYSIS METHODS	7
Analysis of Structural Response	7
Calculation of Responses	8
Peak Responses	. 13
Gust Factor	14
Generalised Modal Properties	14
Code Approaches	14
Along-Wind Response	14
Across-Wind Response	17
Torsional Response	20
ASSESSMENT OF DYNAMIC ANALYSIS METHODS	22
National Building Code of Canada (NBCC)	22
Australian Standard AS 1170.2 - 1989	26
Simiu and Scanlan	30
ESDU	31
Loh and Isyumov	31

		page		
Solari		31		
European		36		
Comparison of	Analysis Methods with Wind Tunnel Results	36		
COMPARISON OF	WIND AND EARTHQUAKE LOADS	38		
CALCULATION C	OF STRUCTURAL PARAMETERS	42		
Building Freq	quencies and Periods	42		
Damping		44		
BUILDING DYNA	AMIC SERVICEABILITY UNDER WIND LOADING	46		
Wind Drift Design				
Wind Induced Vibrations				
DESIGN PROCEDURE FOR ESTIMATING THE ACTION OF WIND FORCES ON BUILDINGS				
Introductory Comments				
Procedural Steps				
CONCLUDING REMARKS				
REFERENCES		62		
APPENDIX A:	Details of Buildings Analysed	A1		
APPENDIX B:	Comparison of Wind Response Calculation Methods	B1		
APPENDIX C:	Worked Examples using Australian Standard AS 1170	C1		
APPENDIX D:	Background to Strength and Serviceability Conditions which Appear in 2/DZ 4203	D1		

.

TABLES

			page
Table	1:	Changes in NBCC responses for 20% increase in input parameters: Auckland ultimate limit state wind speed	25
Table	2:	Changes in NBCC responses for 20% increase in input parameters: Auckland serviceability limit state wind speed	25
Table	3:	Changes in AS 1170 responses for 20% increase in input parameters: Auckland ultimate limit state wind speed	29
Table	4:	Changes in AS 1170 responses for 20% increase in input parameters: Auckland serviceability limit state wind speed	29
Table	5:	Comparison of wind analysis methods with test results	37
Table	6:	Comparison of wind and earthquake base shears and moments: ultimate limit state wind speeds	39
Table	B1:	Comparison of wind response calculation methods: Wellington ultimate limit state wind speed	B2

page

Table	B2:	Comparison of wind response calculation methods: Auckland ultimate limit state wind speed	B3
Table	B3:	Comparison of wind response calculation methods: Wellington serviceability limit state wind speed	B4
Table	в4:	Comparison of wind response calculation methods: Auckland serviceability limit state wind speed	В5
Table	D1:	Comparison of static and dynamic analysis procedures presented in 2/DZ 4203	D2

, .

FIGURES

			page
Figure	1:	Wind response directions	5
Figure	2:	Power spectral density of atmospheric turbulence	8
Figure	3:	One degree-of-freedom structure	9
Figure	4:	Mechanical admittance	10
Figure	5:	Calculation of dynamic response	12
Figure	6:	Cross-wind force factor for structures in terrain category 3	19
Figure	7:	Cross-wind force factor for structures in terrain category 4	19
Figure	8:	Cross-wind force factor for short after-body rectangular section structures	19
Figure	9:	Cross-wind force factor for long after-body rectangular section structures	19
Figure	10:	Notations	22
Figure	11:	Comparison of gust factors calculated for a selection of buildings of different heights	32
Figure	12:	Comparison of along- and across-wind design moments	33
Figure	13:	Comparison of along-wind displacements	34
Figure	14:	Comparison of along- and across-wind accelerations	35
Figure	15:	Comparison of DZ 4203 and NZS 4203 earthquake response spectra	41
Figure	16:	Components of inter-storey drift of tall buildings	47
Figure	17:	Peak horizontal acceleration criteria for occupancy comfort in buildings	50
Figure	A1:	Planforms of buildings analysed	A3
Figure	Dl:	Comparisons of resultant horizontal accelerations for different return periods	D4

NOTATION

The following symbols are more comprehensively explained in the text and defined as they appear. The list of symbols is not exhaustive or rigorous, but represents those more commonly used. The symbols are defined as below, unless otherwise specified in the text.

A	the cross-sectional area of the building, m ²
^a x' ^a y' ^a θ	peak horizontal acceleration in x, y and θ directions, m/s²
b	projected frontal width as seen by the wind parallel to the building's x axis, m
C _D	drag coefficient
°fs	across-wind factor as defined in AS 1170
d	projected frontal width as seen by the wind parallel to the building's y axis, m
E	a measure of the available energy in the wind as defined in AS 1170
F	drag force = $C_{D}qA$, N
a ^b	peak factor
G	gust factor as defined in AS 1170
h	building height from ground level, m
L	shape factor
m	building mass, including long term live load, per unit length, kg/m
м Ъ	total building mass, kg
$\mathbf{\hat{M}}_{\mathbf{x}}, \mathbf{\hat{M}}_{\mathbf{y}}, \mathbf{\hat{M}}_{\mathbf{\theta}}$	design moments in x, y and θ directions, Nm
$n_{x'}n_{y'}n_{\theta}$	natural frequencies in x, y and θ directions
q	dynamic wind pressure, N/m²
r	roughness factor as defined in AS 1170
S	size factor as defined in AS 1170
v _{hs}	maximum serviceability mean wind speed at height h, m/s
v _{hu}	maximum ultimate mean wind speed at height h, m/s
W(z)	mean wind load, N/m

W(z)	total equivalent static wind load, N/m						
x	along-wind direction						
У	across-wind direction						
Z	vertical distance from the base of the building, m						
Δ	peak along-wind displacement at the top of the building, m						
θ	rotational degree of freedom about building's z axis						
ξ	damping ratio						
ρ _a	density of air = 1.25 kg/m³						
ρ _b	average building density (derived from building mass and long term live load) kg/m^3						

•

INTRODUCTION

Background

The aerodynamic forces acting on structures arise from the superposition of static loads due to mean wind velocity and fluctuating loads associated with atmospheric turbulence and wake excitation. In addition, if a structure responds with displacements and velocities large enough to significantly change the flow incidence, forces due to wind-structure interaction become of primary importance.

1

Until comparatively recently, it has been common practice to simplify wind loading calculations by assuming that the motion of the structure is small and applying a quasi-static approach in which a gust of a certain duration and velocity profile is assumed to act on the whole structure at a given instant of time. This is the basis of many code approaches and produces structural designs that are usually satisfactory in terms of safety against structural failure.

Technological changes, including the development of innovative structural systems, improved analysis procedures, increases in the strengths of structural materials and improved fabrication and construction methods, have had a major impact on the design of tall buildings. This trend towards higher structural efficiency, has resulted in lighter and more flexible buildings with a lower inherent capacity for energy dissipation or damping. These developments, together with rising central city land values in New Zealand, has resulted in the construction and planning of many buildings in excess of 100 m in height during the past 10 years. Increases in height and improvements in structural efficiency have produced structures which

are more sensitive to the dynamic actions of wind loading, and so checks on the susceptibility of the design to dynamic amplification and serviceability in terms of deflection and excessive vibration have now become necessary.

In modern tall buildings, inter-storey drifts under seismic and wind loading are frequently the limiting factor in their design rather than strength considerations. When the natural period of the first mode of vibration exceeds about two seconds, there is a significant increase in the energy content (commonly referred to as power spectral density) of wind turbulence and a decrease in the earthquake spectrum. Thus for taller buildings, wind loading effects may govern the design, and there is a need to be able to reliably predict wind displacements including dynamic effects.

The relative importance of wind and earthquake design loads is also dependent on the geographic location as both are assumed in the loading code to have significant variations throughout the country. For example, in the draft New Zealand Standard 2/DZ 4203 : 1989 "General structural design and design loadings for buildings" the design earthquake loads specified for Auckland are 0.5 times the level for Wellington, and the specified ultimate limit state wind speeds give loads for static wind design in Auckland that are about 0.85 times the Wellington levels. Acceptability criteria for vibrations in buildings are frequently expressed in terms of acceleration limits for a one year return period wind speed and are based on human tolerance to vibration discomfort in the upper levels of buildings. Recent wind tunnel studies on tall buildings planned for Auckland and Wellington have shown that in some cases buildings considered to be satisfactory in meeting code strength and deflection limits, were likely to undergo wind induced oscillations that had accelerations exceeding the one year acceptability limits. It is also known that in at least one of the taller buildings in Wellington, wind vibrations occasionally reach levels where a number of the occupants have been unable to continue working due to motion sickness. It would thus appear necessary to place a greater emphasis at the design stage on the acceptability of wind induced vibrations.

For a building of given shape, wind motion levels can be controlled by varying the height, mass, stiffness, damping and planform dimensions The height of the building has the greatest of the structure. influence on the wind response but because the height will be determined by other constraints, including economic factors, it may not be desirable to reduce the height solely to improve the performance under wind loads. Wind response is relatively sensitive to both mass and stiffness, and response accelerations can be reduced by increasing either or both of these parameters. However, this is in conflict with earthquake design optimisation where loads are minimised in tall buildings by reducing both the mass and stiffness. Increasing the damping results in a reduction in both the wind and earthquake responses. Because of cracking, reinforced concrete structures are likely to possess higher levels of damping than steel structures. However, it is difficult to quantify the effects that different materials and structural forms have on damping. It is possible to increase damping under wind loading by using energy dissipating devices within the structural system but this approach, although an established method for reducing earthquake loads in buildings, is still at the early stages of development and has not been applied in New Zealand.

Objectives

In the initial stages of the development of a structure for a tall building, preliminary estimates of earthquake forces, wind loads and the dynamic displacements associated with the wind motion are required. Design codes provide the loading information required to undertake a preliminary analysis of the wind and earthquake response. However, at the present time, there is no simple preliminary design method for estimating the magnitude of the wind motion accelerations and displacements. Thus one of the objectives of this study has been directed towards developing a simple design procedure for estimating wind induced accelerations and displacements.

The principal objectives of this study (as outlined in the project proposal) were:

- (a) The determination of a reliable classification procedure which identifies buildings that are stiff enough for wind effects to be determined by static design methods, and those that are potentially wind sensitive thereby requiring special dynamic analysis to ensure appropriate design for serviceability.
- (b) To prepare recommended design procedures for calculating the response of wind sensitive buildings and for achieving acceleration and deflection responses that are within serviceability limits for both damage and occupant comfort.

Project Scope

The design recommendations given in this document were developed by carrying out an extensive review and evaluation of a number of existing methods for calculating the dynamic wind response of buildings. Each of the calculation methods investigated was set up on a spread sheet to enable the procedures to be numerically evaluated for 26 tall buildings with heights ranging from 14 to 200 m. In addition, the numerical results were compared with wind tunnel experimental results for five of the buildings. The methods investigated and the extent of the review work are summarised below.

Along-Wind Response

Methods given in the following documents for calculating along-wind response were evaluated:

 Standards Association of Australia (SAA) Loading Code, Part 2 : Wind Loads, AS 1170.2 - 1989

- Engineering Sciences Data Unit (ESDU), (1976)
- Ghiocel and Lungu (1975), Eastern European Code Method
- Loh and Isyumov (1985)
- National Building Code of Canada (NBCC) (1985)
- Simiu and Scanlan (1986)
- Solari (1985)

Across-Wind Response

Methods given in the following documents for calculating across-wind response were evaluated:

- Standards Association of Australia Loading Code, AS 1170.2 1989
- Loh and Isyumov (1985)
- National Building Code of Canada (1985)
- Simiu and Scanlan (1986)

Torsional Response

Very little work has been performed toward the development of design information and analytical procedures for use by structural designers. The following three methods were evaluated:

- ESDU (1976)
- European Convention for Constructional Steelwork (1978)
- Simiu and Scanlan (1986)

Identification of Wind Sensitive Structures

Evaluations were carried out on the methods of identifying wind sensitive structures contained in the following references:

- Cook (1987)
- Standards Association of Australia Loading Code, AS 1170.2 1989
- European Convention for Constructional Steelwork (1978)
- Solari (1985)

Comparison of Static and Dynamic Analysis Procedures

A comparison was made of the static and dynamic wind design procedures given in the Standards Association of Australia Loading Code, AS 1170.2 - 1989, by computing the base moments for the range of 26

tall buildings used in the comparison of the dynamic analysis methods.

Buildings Analysed

The geometric and dynamic properties of the 26 buildings analysed are given in the spread sheet summaries presented in Appendix B. The heights and a brief description of the structure and reference information are given in Appendix A.

BACKGROUND TO WIND LOADING

Introductory Comments

Although the knowledge of wind effects on buildings has significantly improved over the past decade, an understanding of the mechanism that relates the fluctuating atmospheric flow to various wind induced effects on structures has not been developed sufficiently for functional relationships to be formulated. Not only is the wind approaching a building a complex phenomenon, but the flow pattern generated around a building is complicated by the distortion of the mean flow, the flow separation, the vortex formation, and the wake development. Large wind pressure fluctuations due to these effects occur on the surface of a building. As a result, large aerodynamic loads are imposed on the structural system and intense localised fluctuating forces act on the facade of such structures. Under the collective influence of these fluctuating forces, a building vibrates in rectilinear and torsional modes, as illustrated in Figure 1. The amplitude of such oscillations is dependent on the nature of aerodynamic forces and the dynamic characteristics of the building.

Figure 1: Wind Response Directions

Along-Wind Loading

The along-wind loading or response of a building due to the gusting wind can be assumed to consist of a mean component due to the action of the mean wind speed (eg, the mean-hourly wind speed) and a fluctuating component due to wind speed variations from the mean. The fluctuating wind is a random mixture of gusts or eddies of various sizes with the larger eddies occurring less often (i.e., with a lower average frequency) than smaller eddies. The natural frequency of vibration of most structures is sufficiently high that the component of the fluctuating load effect imposed by the larger eddies does not excite the structure, i.e. the average frequency with which large gusts occur is usually much less than any of the structure's natural frequencies of vibration and so they do not force the structure to respond dynamically. The loading due to those larger gusts (which are sometimes referred to as "background turbulence") can therefore be treated in a similar way as that due to the mean wind. The smaller eddies, however, because they occur more often, may induce the structure to vibrate at or near one of the structure's natural frequencies of vibration. This in turn induces a magnified dynamic load effect in the structure which can be significant.

The separation of wind loading into mean and fluctuating components is the basis of the so-called "gust factor" approach, which has become the basis of several building codes; notably the National Building Code of Canada (NBCC) and the Standards Association of Australia (SAA). The mean load component is evaluated from the mean wind speed using pressure and load coefficients. The fluctuating loads are determined separately by a method which makes an allowance for the intensity of turbulence at the site, size reduction effects, and dynamic amplification.

The dynamic response of buildings in the along-wind direction can be predicted with reasonable accuracy by the gust factor approach, provided the wind flow is not significantly affected by the presence of neighbouring tall buildings or surrounding terrain.

Across-Wind Loading

Tall buildings are bluff (as opposed to streamlined) bodies that cause the flow to separate from the surface of the structure, rather than follow the body contour. The wake flow thus created behind the building exhibits various degrees of periodicity, ranging from virtually periodic with a single frequency to fully random. In each of these cases, at any given instant, the wake flow is asymmetrical. The across-wind response (i.e., motion in a plane perpendicular to the wind direction) is due to this asymmetry, although the lateral turbulent fluctuations in the oncoming flow may also contribute to the across-wind forces.

The complex nature of the across-wind loading which results from an interaction of incident turbulence, unsteady wake effects, and building motion has inhibited reliable theoretical prediction. However, empirical information obtained from wind tunnel measurements is available for across-wind response of tall buildings not subjected to interference effects, and expressions based on such information appear in the current Australian and Canadian building codes.

Torsional Loading

When the wind flows normal to the face of a prismatic-type structure, torsional or twisting moments are induced in the structure by variations in the fluctuating wind velocity across the face of the The larger the building, in particular the larger the building. width, the greater will be the fluctuating torsional moment. This fluctuating torsional loading may be caused by turbulence buffeting or even induced by vortex shedding.

Torsional motions of a building occur because of the eccentricity between the instantaneous aerodynamic centre and the building's centre of rigidity. However, the structural systems commonly employed in modern buildings and structures usually result in a natural frequency in a torsional mode that are greater than the lowest translational natural frequency. Hence, torsional motions will develop only after lateral motions are induced.

Despite significant advances in recent years, there is as yet no generalised analytical method available to accurately calculate the torsional response of tall buildings. Nevertheless, systematic wind tunnel studies conducted at the University of Western Ontario have led to empirical relations for estimating peak torsional moments and torsional-induced horizontal accelerations. These are presented in Simiu and Scanlan (1986).

Combined Wind Loading

It is common practice in engineering to base the design of a building on the independent action of wind loads estimated along particular directions of the building. Unfortunately, this convenient assumption is an over-simplification, since for any particular wind direction the building is expected to experience simultaneously acting forces in the along- and across-wind directions, as well as a torsional moment. Therefore, in addition to considering the independently acting wind loads in each of these principal directions, a combined load case with an appropriately selected coincidence or joint action factor should also be examined. This factor accounts for the reduced likelihood of the simultaneous occurrence of maximum along-, across- and torsional wind effects.

Based on available wind tunnel test data, the following design "load cases" have been recommended (Isyumov, 1982):

1.0
$$\hat{M}_{x}$$
 or 1.0 \hat{M}_{y}
or 0.8 \hat{M}_{x} + 0.8 \hat{M}_{y}
or 0.7 \hat{M}_{x} + 0.7 \hat{M}_{y} + 0.7 \hat{M}_{θ}

where M_{A} and M_{A} are the design along- and across-wind overturning moments, and M_{A} is the design torsional moment.

DERIVATION OF DYNAMIC ANALYSIS METHODS

Analysis of Structural Response

The exciting forces on a structure due to wind action tend to be random in amplitude and spread over a large range of frequencies. The structural response is dominated by the action of resonant response to energy available in the narrow bands about the natural structural frequencies. In most cases the major part of the exciting energy is at frequencies much lower than the fundamental natural frequencies of buildings and decreases with increasing frequency. Hence, for wind design purposes, it is usually only necessary to consider response in the fundamental mode of each principal direction as the contribution from higher modes is rarely significant.

The response of a structure to wind loading differs from earthquake loading in three major ways:

- (1) The duration of an earthquake load is relatively short and interest centres on the maximum displacement achieved. In the wind loading case, plastic damage may accumulate over the several hours duration of a wind storm.
- (2) The frequency components of an earthquake load spectrum differ markedly from those of a wind load, the former being confined to a much narrower range than the latter (refer Fig. 2). With taller buildings, the wind loading and wind motion are as important as the earthquake loading, and may control the design. In particular, when the natural period of the first mode of

vibration of a building exceeds about two seconds, then the earthquake forces reduce and the wind motion forces increase.

(3) The response of a structure to an earthquake takes place about zero mean displacement, whereas wind response takes place with a significant mean deflection present. This means that yield excursions under wind loading are usually in the same direction, causing an accumulation of inelastic displacement.

However, the dynamic response of buildings subjected to wind and earthquake loading can be estimated in the same manner using methods of random vibration theory in either frequency or time domain. A brief discussion of the principles and terminology of structural dynamics is therefore given below, as a necessary preliminary to examining the various code approaches for estimating wind loading.

Figure 2: Power Spectral Density of Atmospheric Turbulence and Natural Frequency Range of Civil Engineering Structures (Reproduced from Kareem and Cermak, 1979)

Calculation of Responses

In this section the term "response" refers to any of the following effects measured or calculated at any point of interest: (a) forces or moments; (b) deflections; and (c) accelerations.

Before describing procedures for predicting wind induced responses, reference is first made to a very simple structure illustrated in Figure 3, consisting of a mass M at the top of a light vertical elastic cantilever. The lateral stiffness of the tip of the cantilever is K (i.e., its lateral deflection under static lateral load P is P/K). If the mass is displaced laterally and then released, the system will oscillate from side to side with frequency n where:

$$n_{O} = \frac{1}{2\pi} \sqrt{\frac{K}{M}} \quad (Hz)$$

This is the natural frequency of the structure. The deflected shape of the structure when vibrating in a single mode is referred to as the mode shape.

Figure 3: One Degree-of-Freedom Structure

If the structure is left to oscillate, the amplitude of its motion will gradually decay as energy is dissipated in damping. Damping is usually expressed as ξ which is the proportion of the critical damping of the structure (critical damping is the minimum damping necessary to cause the structure to move in one direction to rest after being released, with no oscillation).

Structural damping can be estimated from the decay rate of free oscillation as follows.

The logarithmic decrement δ is defined as:

$$\delta = \ln \left(\frac{\text{amplitude in cycle N}}{\text{amplitude in cycle N+1}}\right)$$
 and $\xi = \delta/2\pi$

If the structure is now subjected to a harmonic force $p = Psin2_{\pi}nt$ applied to the mass, its response will vary with the frequency of the force, n, as illustrated in Figure 4. For frequencies well below the natural frequency of the structure the response is quasi-static, the instantaneous force and deflection being:

p = Psin2#nt

 $x = X \sin 2\pi nt$ where X = P/K

As n approaches n, a resonance occurs causing dynamic magnification of the response amplitude. When a steady state has been reached:

$$X = mP/K$$
 where $m_{max} = \frac{1}{2\xi}$ at $n = n_{o}$

For lightly damped structures this resonance occurs over a narrow band of frequencies with a high resonance magnification factor. Note that as the damping ratio tends to zero, the magnification tends to infinity.

Figure 4: Mechanical Admittance (After Willford, 1983)

The steady state response takes some time to build up. A fraction, R, of the steady state response will be achieved after N cycles of steady excitation where:

$$N = \frac{-\ln (1-R)}{2\pi \xi}$$

As the applied frequency is increased beyond n, the response amplitude decreases rapidly. The inertia of the system increases its apparent stiffness to rapidly alternating forces. The variation of response with frequency illustrated in Figure 4 is known as the mechanical admittance of the system, $|H(n)|^2$, and can be mathematically expressed as:

$$|H(n)|^{2} = \frac{1}{(1 - (\frac{n}{n_{0}})^{2})^{2} - 4\xi^{2} (\frac{n}{n_{0}})^{2}}$$

and the magnification factor, m, is related to $|H(n)|^2$ by:

$$m = \frac{x}{x_s} = |H(n)|$$

where x_{c} is the static deflection of the system.

As indicated above, wind induced forces contain a wide spectrum of frequencies. The mechanical admittance is a "transfer function" by which the response spectrum can be obtained from the aerodynamic force spectrum.

In calculating wind induced responses of buildings, it is necessary to establish:

- (a) the mean hourly design wind speed;
- (b) the upstream terrain characteristics these define the wind velocity profiles and turbulence characteristics; and
- (c) the dynamic properties of the building.

Mean forces, moments, deflections, etc are calculated in a traditional static way using the mean velocity profile and building drag coefficient. Fluctuating responses are obtained from the root mean square (rms) of the incident wind gust velocity. Since the aerodynamic and mechanical admittances are frequency-dependent, this has to be done by considering the spectra. This procedure is illustrated schematically in Figure 5.

With reference to Figure 5, transforming the random velocity function of wind loading into the frequency domain gives the gust spectrum, S_v (units m^2/s^2 Hz), shown at the top of the diagram. The slope at high frequencies approach a value of -2/3 when plotted on a log-log scale as used in Figure 5. The reduced correlation of the gusts at higher frequency reduces the effective force at higher frequencies, i.e. the aerodynamic admittance transfer function in Figure 5 falls off at higher frequencies. This takes into account, in addition to the relation of the size of the disturbance to the size of the structure, such effects as the aerodynamics of the building and the variation of the mean wind speed profile. Vickery and Davenport (1968) measured the aerodynamic admittance function experimentally and found it to be dropping off at approximately -4/3 at high frequencies. For very tall structures the drop-off would be steeper, and for across-wind vibrations the function would show magnifications around the vortex shedding frequencies.

Figure 5: Calculation of Dynamic Response (After Willford, 1983)

The product of the velocity spectrum and the aerodynamic admittance transfer function gives the power spectrum of the force, S_ (units N^{2}/Hz), dropping off with a slope of approximately -2 to $\frac{r}{2}$.5 for simple, not very tall structures in along-wind loading.

In the case of the rms response, the spectrum of the displacement, S_{y} (units m^2/Hz) is evaluated from the following relation:

$$S_{X}(n) = \frac{|H(n)|^{2}}{K^{2}} S_{F}(n)$$

where K (units N/m) is the stiffness as defined on page 8.

From the definition of power spectrum, $\sigma_X^2 = \int S_X dn$, where σ_X is the rms displacement in the x direction.

Since the effect of $|H(n)|^2$ is significant only at resonance, the above integral can be simplified by dividing it into two parts: a background (or broad band or quasi-static) response, σ_{R} ; and the resonant (or narrow band) response, σ_{D} , i.e.

$$\sigma_X^2 = \frac{1}{K^2} \begin{bmatrix} \infty & \frac{\pi n S_r(n)}{\int S_r dn + \frac{\pi n S_r(n)}{4\xi}} \end{bmatrix}$$

The above expression can be further simplified as:

$$\sigma_{\rm X} = \frac{\sigma_{\rm BF}}{K} \sqrt{1 + \frac{\pi n S_{\rm F}(n)}{4\xi \sigma_{\rm BF}^2}} = \frac{1}{K} \sqrt{\frac{\sigma_{\rm F}^2 + \sigma_{\rm DF}^2}{0}} = \sqrt{\frac{\sigma_{\rm F}^2 + \sigma_{\rm DX}^2}{0}}$$

where $\sigma_{BF}' \sigma_{BX} = \text{standard deviation of the non-resonant component of} aerodynamic force and displacement respectively$ $<math>\sigma_{DF}' \sigma_{DX} = \text{standard deviation of the resonant dynamic component} of aerodynamic force and displacement respectively}$

This representation is the basis of the gust factor approaches.

The rms acceleration can be obtained from the resonant generalised displacement RMS as follows:

$$\sigma_{\rm X} = (2\pi n_{\rm O})^2 \sigma_{\rm DX} = \frac{(2\pi n_{\rm O})^2}{K} \sqrt{\frac{\pi n_{\rm O} S_{\rm F} (n_{\rm O})}{4\xi}}$$

The mean values of all the accelerations will be zero.

Several modes may contribute to the total fluctuating response. The contributions from each mode (provided the modes are sufficiently separated in period) may be combined assuming they are uncorrelated,

i.e.

$$\sigma_{\rm T} = \sqrt{\begin{array}{c} \sigma_{\rm 2}^2 + \sigma_{\rm 2}^2 + \sigma_{\rm 3}^2 + \cdots \\ 1 & 2 & 3 \end{array}}$$

where $\sigma_1, \sigma_2, \sigma_3$, etc are the contributions from each mode.

Peak Responses

Peak responses are obtained by adding extreme values of the fluctuating components to the mean response. The cycle frequency, γ , of the resonant component is the natural frequency of vibration, n. A lower cycle frequency is appropriate for the background components. Peak responses are obtained as follows:

$$\hat{E} = \overline{E} + \sqrt{[3.5\sigma_{BE}]^2 + [g_{p}\sigma_{DE}]^2}$$

$$\overline{E}$$
 = mean value of E

$$\tilde{E}$$
 = peak value of E

$$g_{p} = \sqrt{2 \ln n_{o} T} + \frac{0.577}{\sqrt{2 \ln n_{o} T}}$$

in which T is the length of time considered (usually one hour, i.e. 3600 seconds).

Gust Factor

Unlike the peak factor, the gust factor, G, is considered as a relationship between the gusts and the magnification due to the structural dynamic properties. It is defined as follows:

$$G = \frac{\text{expected peak}}{\text{mean}} = 1 + \sqrt{\frac{[3.5\sigma_{\text{BE}}]^2}{\overline{E}^2} + \frac{[g\sigma_{\text{DE}}]^2}{\overline{E}^2}}$$

Generalised Modal Properties

It is convenient to assess the total dynamic response of buildings under wind loading in "modal components", i.e. to determine the response of the structure to the fluctuating aerodynamic forces separately for each natural mode of the structure, and then to combine the responses. Each mode may be a complex 3-D shape, but the analysis can be simplified by introducing the concept of generalised modal properties.

Each mode of vibration can be transformed and represented by a single generalised mass, a single generalised stiffness, and a single generalised displacement, which are analogous to the parameters described for the simple one degree-of-freedom structure. The transformation ensures that the overall dynamic properties (natural frequency, vibrational energy, etc) are unaffected, but it eliminates all the degrees of freedom except one (the generalised displacement). The forcing function (aerodynamic force) is also transformed into a generalised force.

The generalised displacement, defining the magnitude of the modal response, is calculated from the generalised force and the generalised dynamic properties according to the principles given above. The deflections at specific physical points on the building are obtained by multiplying by the mode shape function, μ , which defines the deflection at every point relative to the generalised displacement of the mode being considered.

The transformation procedures are detailed in Warburton (1964).

Code Approaches

Along-Wind Response

Along-wind forces acting on a building are primarily due to pressure fluctuations on its windward and leeward faces which are caused by incident turbulence. The spectrum for the along-wind force can be defined in terms of the spectrum of wind velocity fluctuations, a spatial coherence function, and drag coefficients.

The gust factor approach in the National Building Code of Canada has the following equation:

$$G = 1 + g_p \sqrt{\frac{K'}{C_{eH}} (B + \frac{sE'}{\xi})}$$

= the gust factor = C_{a} as defined in NBCC where G = the peak factor gp = factor related to surface roughness = K as defined in NBCC K' C_{eH} = an exposure factor based on the mean wind speed profile = a background excitation factor B = a size reduction factor S = the damping ratio = β as defined in NBCC ξ E' = gust energy ratio at the natural frequency of structure = F as defined in NBCC

With reference to page 13, the relative contributions from the background and resonant excitation can be written as:

$$\frac{\sigma_{BF}^2}{F^2} = \frac{K'B}{C_{eH}} \quad \text{and} \quad \frac{\sigma_{DF}^2}{F^2} = \frac{\pi n S_F(n)}{4\xi} = \frac{K'^2 sE'}{\xi C_{eH}}$$

where \overline{F} = mean along-wind force

Thus the assumed spectral distribution of the National Building Code of Canada can be calculated as:

$$\frac{\stackrel{n}{O}\stackrel{S}{F}\stackrel{(n)}{O}}{F^{2}} = \frac{4}{\pi} \frac{K'sE'}{C_{eH}}$$

The formulation of the gust factor in AS 1170 is very similar, the expression being:

$$1 + r \sqrt{2.7^2 B (1+\omega)^2 + g_p^2 sE'/\xi}$$

where G = the gust factor

$$g_p = peak factor = g_f as defined in AS 1170$$

r = roughness factor

- B = a background excitation factor
- ω = a factor to account for the second order effects of turbulence

E' = a measure of the available energy in the wind stream = E as defined in AS 1170

 ξ = the damping ratio = ζ as defined in AS 1170

Because the Australian code gust factor is based on moment, rather than force spectra, this gives:

$$\frac{\sigma_{BM}^2}{M^2} = B(1+\omega)^2 r \quad \text{and} \quad \frac{\sigma_{DM}^2}{M^2} = \frac{r^2 s E'}{\xi}$$

The spectral modal force, $n S_{f}(n_{o})$, is equal to $n S_{O}(n_{o})/h^{2}$ which can be rewritten as $4r^{2}sE'M^{2}/\pi h^{2}$.

Having determined the spectral modal force, the rms of the building's along-wind accelerations, $\sigma_{\vec{x}}$, can be calculated as follows:

$$\sigma_{\rm X} = (2\pi n_{\rm O})^2 \sigma_{\rm DX} = \frac{(2\pi n_{\rm O})^2}{\kappa} \sqrt{\frac{\pi n_{\rm O} S_{\rm F} (n_{\rm O})}{4\xi}}$$

For NBCC,
$$\sigma_{\ddot{X}} = (2\pi n_0)^2 \frac{\overline{F}}{K} \sqrt{\frac{K'sE'}{\xi C_{eH}}}$$

whereas for AS 1170,
$$\sigma_{\ddot{X}} = (2\pi n_0)^2 \frac{\overline{M}}{Kh} \sqrt{\frac{r^2 s E'}{\xi}}$$

Assuming a linear mode shape and uniform mass distribution, $K = (2\pi n)^2 \rho_b bdh/3$, where ρ_b is the average building density, h is the building height, b is the building width normal to the wind direction, and d is the building depth in the wind direction.

The relations for rms along-wind accelerations can be simplified to:

$$\sigma_{\rm X} = \frac{3\overline{\rm F}}{M_{\rm b}} \sqrt{\frac{{\rm K'sE'}}{\xi C_{\rm eH}}}$$
(NBCC)

and
$$\sigma_{ii} = \frac{3M}{M_b h} \sqrt{\frac{r^2 s E'}{\xi}}$$
 (AS 1170)

where M_{b} = total building mass (kg) = ρ_{b} bdh

The mean along-wind force can be calculated from:

$$\overline{F} = b C_{D} \int_{0}^{h} q(z) dz$$

where $q(z) = \frac{1}{2}\rho_a \overline{V}^2(z) = \text{mean dynamic pressure, N/m}^2$ $C_D = \text{force coefficient in the along-wind direction}$

Therefore
$$\overline{x} = \overline{F}/K = \frac{3C_D}{(2\pi n_0)^2 \rho_b dh} \int_0^h q(z).dz$$

The peak along-wind deflection, $\hat{\mathbf{x}}$, and acceleration, $\ddot{\mathbf{x}}$, are calculated from:

$$\hat{\mathbf{x}} = \mathbf{G} \frac{\overline{\mathbf{F}}}{\mathbf{K}}$$

and $\ddot{x} = g_p \sigma_{\ddot{x}}$, where g_p is the peak factor defined on page 13.

Across-Wind Response

The across-wind forces of buildings depend mainly on pressure fluctuations on the side walls caused by wake or, more correctly, the broad band vortex shedding process. As a consequence of the excitation mechanism being dominated by the vortex shedding process, the determination of the across-wind response of buildings becomes very complex and can only be realistically achieved using semiempirical methods based on measured response data.

The National Building Code of Canada proposes an expression for the rms across-wind acceleration, σ_{i} (h), which may be written in the form:

$$\sigma_{\text{iv}}(h) = 0.008 \frac{n_1^2}{\rho_b} \sqrt{\frac{A}{\xi}} \left(\frac{\overline{V}(h)}{n_1 \sqrt{A}}\right)^{3.3}$$

where $\sigma_{i}(h) = rms$ of across-wind oscillations at the top of the building

- A = cross-sectional area of the building
- = height of the building h
- V(h) = mean wind speed at the top of the building
- = fundamental frequency of vibration in across-wind n₁ direction
- = damping ratio ξ
- = the average building density ρ_b

This expression has been derived on the basis of turbulent boundary layer wind tunnel studies involving a variety of building models. The basic premise behind the approach taken is that the across-wind behaviour of tall buildings is not markedly dependent on their geometry, but more on a characteristic dimension and their frequency, mass and damping. The characteristic dimension chosen was the square root of the cross-sectional area.

Across-wind rms tip deflections, $\sigma_{1}(h)$, and the associated peak base moment, \hat{M}_v , may be estimated from ^Ythe following expressions: $\sigma_{y}(h) = \frac{\sigma_{..}(h)}{(2\pi n_{1})^{2}}$ and $\hat{M}_{y} = 1/3 \ A \ h^{2} g_{p} \sigma_{y}(h)$, where g_{p} is the peak factor defined on page 13.

In comparison, the technique employed by the Australian Wind Loading Code, AS 1170.2 - 1989, to calculate the across-wind response due to wake excitation is to solve the equation of motion for a lightly damped structure in modal form with the forcing function mode generalised in spectral format. A detailed description of the technique has been previously given.

The across-wind design base overturning moment, based on a fundamental mode of vibration which has a linear mode shape, may be determined from:

$$\hat{M}_{y} = 0.5 g_{p}q(h) bh^{2} \sqrt{\frac{\pi S}{\xi}}$$

and the peak acceleration at the top of the structure, $\ddot{y} = g_{p}\sigma_{y}$, may be determined from:

$$\ddot{y} = \frac{\dot{M}}{1/3} \frac{y}{\rho_b b dh^2}$$
where g_p = peak factor = $\sqrt{2 \ln n_1 3600} + \frac{0.577}{\sqrt{2 \ln n_1 3600}}$
 $q(h)$ = mean hourly dynamic wind pressure at height h
 b = breadth of structure normal to the wind
 d = depth of structure in the wind direction
 h = height of the structure

= average building density ρ_b

- = fundamental frequency in the across-wind, i.e. y n_1 direction
- ξ = fraction of critical damping
- S = across-wind force factor given in Figures 6-9 for various Y configurations

The across-wind force spectra presented above represent average values taken from many aeroelastic model wind tunnel studies. They exemplify the characteristics of tall buildings with nominally symmetrical or square plan form shapes.

The across-wind forces on slender prismatic structures are strongly dependent on the strength and frequency of vortices shed alternatively from each side. The spectrum of these forces is narrow and centred on the shedding frequency, n, which is related to the wind speed, $\overline{V}(h)$, and the breadth, b, of the body such that:

$$n_s = SV(h)/b$$

where S = Strouhal Number = 0.1 to 0.15 for rectangular prisms.

For buildings having h/b ratios less than about 6, vortex shedding is present, but across-wind forces are also induced by turbulence. The spectrum of the across-wind forces is generally broadened to the extent that a critical velocity does not exist and the response rises monotonically with wind speed. The across-wind force factor, S, is therefore a function of terrain exposure and the slenderness ratio h/b.

With reference to the above spectra, it will be noted that for any reduced velocity, $\overline{V}(h)/n_1 b$, the value of S increases as the terrain becomes smoother. This is because in rougher terrain the turbulence intensity is higher which, in turn, causes the across-wind force to have a less peaked spectral density as well as a decreased coherence in the along-wind direction. The peak in the across-wind force factor represents the condition at which the vortex shedding frequency is very close to the natural frequency of the building.

S increases as the slenderness ratio h/b increases as a result of larger across-wind displacements and the higher derivatives of displacement. The across-wind force factor plots also show that, over a limited range of wind speeds that commonly includes the design speed (i.e., $3 < \overline{V}(h)/n_1 b < 6$), S can be approximated by:

$$s_y = C \left(\frac{\overline{v}(h)}{nb}\right)^n$$

where C is a constant n has a value of 3 to 4

Experimental studies have indicated that across-wind motions are likely to be critical in regard to accelerations for most tall buildings, but from a stress point of view the across-wind motions will dominate only for very tall or slender buildings or buildings which are unusually flexible.

Torsional Response

Most code approaches do not consider wind induced torsional loads apart from situations where there is an eccentricity between the centres of twist and building geometry. Recent trends towards more complex building shapes and structural systems have resulted in more unbalanced wind loads and larger torsional forces and motions. A particular important consequence of the latter is the increase in the wind induced accelerations near the perimeter of a building.

Most building codes provide a relatively unsophisticated procedure, if any, to estimate loads and deflections associated with torsion. For example, neither the Australian (AS 1170) or American National Standard (ANSI) Building Codes require that wind induced torsion be considered in the design of buildings.

NBCC section 4.1.8.3(1) requires buildings "to be capable of withstanding the effect of 0.75 times the full wind loading acting over any portion of the area and full load on the rest of the area". Removal of up to 25 per cent of the load prescribed by the Code from any part of the structure is intended to reflect the observed

behaviour of pressure patterns in turbulent wind. This allowance for torsion is equivalent to applying the design load at an eccentricity of about 3 or 4 per cent of the building width. However, comparisons with wind tunnel model studies show that eccentricities suggested by are consistently than much lower those obtained the NBCC experimentally. The deficiency of the NBCC requirement is alleviated somewhat by the fact that, particularly for compact, symmetric buildings, the design of most structural members for wind is governed by horizontal sway loads. Nevertheless an increasing body of evidence indicates that torsional effects may be important for some buildings, particularly those which are very flexible in torsion and those with an unusual geometry.

While there are still no reliable theoretical estimates of torsional effects, some progress in estimating the torsional response have been made using available wind tunnel data. Systematic wind tunnel studies conducted at the University of Western Ontario (Greig, 1980) have led to the following empirical relation, presented in Simiu and Scanlan (1986) for estimating the peak base torque, T_{max} , induced by winds with speed V(h) at the top of the building:

$$T_{max} = \psi \{ \overline{T} + g_{p} T_{rms} \}$$

where g is the peak factor =
$$\sqrt{2 \ln n_{\theta}^{3600}} + \frac{0.577}{\sqrt{2 \ln n_{\theta}^{3600}}}$$

 ψ is a reduction coefficient to account for the fact that most unfavourable direction for \overline{T} and T do not coincide rms

It is estimated that in most cases 0.75 < ψ < 1.0.

The base torque, \overline{T} , and the rms base torque, T_{rms} , are given by:

$$\overline{T} \cong 0.048 L^4 h n_{\theta}^2 \left(\frac{\overline{V}(h)}{n_{\theta}L}\right)^2$$
$$T_{rms} \cong 0.002 L^4 h \frac{n_{\theta}^2}{\sqrt{\xi_{\theta}}} \left(\frac{\overline{V}(h)}{n_{\theta}L}\right)^{2.68}$$

where h is the height of the building, and n_{θ} and ξ_{θ} are the natural frequency and the damping ratio in the fundamental torsional mode of vibration.

The length parameter, L, in the above expressions is a measure of the effective eccentricity of the aerodynamic force. The definition of L is:

$$L = \frac{f |r| ds}{\sqrt{A}}$$

where A is the cross-sectional area of the building

- ds is the elemental length of the building perimeter
- Irl is the torque arm of the element ds, i.e. the distance between the elastic centre and the normal to the building boundary at the centre of the element ds (refer Fig. 10)

For a rectangular building of width b and depth d:

$$L = \frac{\frac{1}{2}(b^2 + d^2)}{\sqrt{bd}}$$

The peak torsional induced horizontal accelerations at the top of the building at a distance v from the elastic centre can be written as:

$$\ddot{\theta}v = 2g T_{ms}v/\rho_{b}dhr_{m}^{2}$$

where $\ddot{\theta}$ is the peak angular acceleration (in rad/sec²), and r is the radius of gyration. For a rectangular shape with uniform bulk mass per unit volume:

$$r^2 = (b^2 + d^2)/12$$

The expression for $\ddot{\theta}$ shows that horizontal accelerations due to torsion are negligible near the centroid of the building, but could be significant at the perimeter of wide buildings.

The results of specific wind engineering studies indicate that the above empirical model gives estimates of the torsional load effects that are within 60 per cent of those experimentally derived.

The treatment of torsion in both ESDU 76001 and ECCS 1978 is contrived so that basic data presented for the estimation of along-wind loads can be used with suitable correction factors to determine the meanmaximum torsional moment. However, both these methods fail to provide guidance for calculating torsional induced horizontal accelerations.

ASSESSMENT OF DYNAMIC ANALYSIS METHODS

National Building Code of Canada (NBCC)

Background to the dynamic analysis method used in the National Building Code of Canada (NBCC) is given on pages 14-17.

The hourly mean wind speed at the top of the building is related to an exposure factor that is a function of the building height and the terrain roughness. The following three terrain categories are used:

m

Exposure A: Open level terrain with only scattered buildings, trees or other obstructions, open water or shorelines thereof.

Exposure B: Suburban and urban areas, wooded terrain or centres of large towns.

Exposure C: Centres of large cities and heavy concentrations of tall buildings. At least 50 per cent of the buildings should exceed four stories.

The exposure factor is also used in the calculation of the pressures on the windward and leeward sides for the mean hourly wind speeds and in the calculation of the gust effect factor.

As outlined on pages 14-15, the NBCC method makes use of a gust effect factor which is the ratio of the expected peak loading effect to the mean loading effect. That is, forces and moments derived from the mean hourly wind speeds and pressures are multiplied by the gust effect factor to give the peak dynamic forces and moments. The gust factor consists of two basic parts: the first term makes allowance for the dynamic effects of the background wind turbulence; the second term scales the result for the structural resonance that occurs at a load spectrum frequency close to the natural frequency of the structure.

The code also presents expressions for evaluating the peak along-wind displacement and peak along-wind and across-wind accelerations at the top of the building. In the derivation of these expressions, it is assumed that the response in modes of vibration higher than the first is small, and that the first mode shape is a linear function of building height.

The analysis results obtained using NBCC to estimate wind induced responses are summarised in Figures 11-14 (presented on pages 32-35), together with the results of the other methods. The various responses are plotted against building height for all buildings, except the seven Auckland University buildings. More complete results are given in Tables B1-B4 of Appendix B. Tables B1 and B2 are for the regional ultimate limit state (1000 year return period) wind speeds specified for Wellington and Auckland in 2/DZ 4203 : 1989, i.e. 50 and 46 m/s respectively. Tables B3 and B4 are for the regional serviceability limit state (20 year return period) wind speeds for Wellington and Auckland in 2/DZ 4203 : 1989, i.e. 39 and 35 m/s respectively. Terrain exposure B was assumed in all the computations. No corrections were made for site height and shielding effects. For Wellington City, the local topography also plays a major role in determining the design wind speeds and so site-specific topographic and channelling multiplying factors as specified in 2/DZ 4203 would normally be applied. However, to prevent any loss of generality, no correction for topographic effects were made to the Wellington regional wind speeds resulting in ultimate and serviceability limit state wind speeds which are about 10 per cent low. The damping factors were taken as 1.0 per cent and 1.5 per cent for steel and concrete buildings respectively under the serviceability wind speeds, and increased to 2 per cent and 5 per cent for the ultimate wind speeds.

Comparison of the gust factors from NBCC with the values from the other methods shows that the NBCC method generally gives the lowest gust factor value. The ESDU method gives the lowest values for some of the shorter buildings under ultimate limit state wind speeds. The NBCC values vary with changes in building height in a manner similar to the ESDU results, and are comparable in magnitude with ESDU for most of the buildings. The range of the gust factor values is relatively high but reduces with increasing building height.

The peak along-wind base moments from NBCC are also generally lower than the moments from the other methods, but again there is reasonably good agreement with the ESDU values.

The NBCC peak along-wind displacements are generally in good agreement with the other methods.

The along- and across-wind accelerations from NBCC for the serviceability wind speeds are generally within the range of values obtained from the other methods.

An analysis was carried out to determine the sensitivity of the NBCC response outputs to the various building and wind input parameters. This analysis was carried out for Buildings C and I which were considered to be reasonably typical of tall concrete and steel buildings respectively. For each building, the analysis was performed using the appropriate wind speeds and damping factors for the Auckland regional ultimate and serviceability wind speeds. The results of the analyses are shown in Tables 1 and 2. Each of the input variables tabulated was independently increased by 20 per cent and the change in the output parameters computed as a per cent change from the value obtained using the unaltered input parameters. The building density and building mass per unit height were assumed to be directly related, and both these parameters were increased when the density was increased. Note that many of the input parameters are inter-related and cannot physically be changed independently. For example, physical variations in height and mass will also result in changes in the natural frequencies of the building.

The results in Table 1 show that the gust factor is relatively insensitive to the various building parameters, and is influenced most by the basic mean wind speed.

The displacement responses are sensitive to the wind speed, building width and natural frequency, with the wind speed causing the largest changes of over 50 per cent. A regression analysis of the displacement results for the first 19 buildings listed in Tables B1-B4, using damping factors of 2 per cent and 5 per cent for the steel and concrete buildings respectively, gave the following approximate expression:

$$\hat{\mathbf{x}} = 6.0 \times 10^{-3} \overline{v}_{hs}^2 b^{0.55} h^{1.4}/m$$

Table 1: Changes in NBCC Responses for 20% Increase in Input Parameters: Auckland Ultimate Limit State Wind Speed

(a) = Building C (5% damping) (b) = Building I (2% damping)

INPUT PARAMETER	GUST FACTOR		<pre>% CHANGE IN ALONG-WIND DISPLACEMENT</pre>		IN RESPO ALONG MOM	I RESPONSE ALONG-WIND MOMENT		ACROSS-WIND MOMENT	
	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	
Basic 10 m wind speed	4.5	6.4	50	53	50	53	84	84	
Height	-3.4	-3.7	5.8	5.5	52	52	68	68	
Width	-2.2	-2.7	17	17	17	17	-2.9	-2.9	
Damping	-1.8	-2.5	-1.8	-2.5	-1.8	-2.6	-9.1	-9.0	
Frequency	-3.0	-4.4	-33	-34	-3.0	-4.4	-21	-21	
Building density	0	0	-17	-17	0	0	0	0	

Table 2: Changes in NBCC Responses for 20% Increase in Input Parameters: Auckland Serviceability Limit State Wind Speed

ويسودونها سواويبين بتواريا مشمعات فتجاكره والمطاعب								
INPUT PARAMETER	ALONG-WIND DISPLACEMENT (a) (b)		<pre>% CHANGE I ALONG-WIND ACCELERATION (a) (b)</pre>		IN RESPONSE ACROSS-WIND ACCELERATION (a) (b)		RESULTANT ACCELERATION (a) (b)	
Basic 10 m wind speed	· 54	54	76	77	84	84	80	80
Height	5.6	5.4	2.7	2.8	16	16	9.8	9.6
Width	17	17	11	11	-19	-19	0	-2.4
Damping	-2.6	-2.7	-9.0	-9.0	-9.0	-9.0	-9.0	-9.0
Frequency	-34	-34	-18	-18	-21	-21	-19	-19
Building density	-17	-17	-17	-17	-17	-17	-17	-17

(a) = Building C (1.5% damping) (b) = Building I (1% damping)

where \hat{x} = peak along-wind displacement at top (m)

$$\overline{V}_{hs}$$
 = mean serviceability wind speed at the top of the building (m/s)

- b = building width (m)
- h = building height from ground level (m)
- m = building mass per unit height (kg/m)

Although the displacement is a function of the building frequency, the frequency is also directly related to the building height, and it is therefore possible to eliminate the frequency dependence of displacement without introducing significant error. The above expression is useful in providing a quick assessment of the deflection response at the preliminary design stage. Deflections from this expression (labelled approx NBCC) are compared in Figure 13 with the other displacement results. For reasonably typical buildings it can be expected to give displacements within 30 per cent of the NBCC more exact approach.

Both the along-wind and across-wind base moments are very sensitive to basic wind speed and building height. Raising the height of the building increases the base moment by the direct effect of the increased area and height, and also by increasing the wind speed at the top of the building. The along-wind moment is relatively sensitive to the building width and the across-wind moment is relatively sensitive to the building natural frequency.

Both the along-wind and across-wind accelerations are very sensitive to the basic wind speed, and are moderately sensitive to the other parameters with the exception that the along-wind acceleration is relatively insensitive to building height.

Australian Standard AS 1170.2 - 1989

Details of the dynamic analysis method used in the Australian Standard (AS 1170) are given on pages 15-20.

In the AS 1170 approach, the hourly mean wind speed at the top of the building is obtained from tabulated terrain and structure height multipliers. The following four different terrain categories are specified:

Category 1: Exposed open terrain with few or no obstructions and water surfaces.

Category 2: Open terrain, grassland with few well scattered obstructions having heights from 1.5 m to 10.0 m and water surfaces.

Category 3: Terrain with numerous closely spaced obstructions having the size of domestic houses (3.0-5.0 m high).

Category 4: Terrain with numerous large, high (10.0-30.0 m high) and closely spaced obstructions such as large city centres and well developed industrial complexes.

In a similar manner to NBCC, AS 1170 makes use of a gust effect factor which is the ratio of the expected peak loading effect to the mean loading effect. The peak dynamic base moment is thus obtained by multiplying the pressures associated with the mean hourly wind speed by the gust factor.

The code also presents expressions for evaluating the peak across-wind base moment and acceleration at the top of the building. No method is given for evaluating the along-wind acceleration or displacement. However, as shown on page 16, the along-wind acceleration can be deduced from the mean along-wind moment and the resonance component part of the gust factor expression.

The analysis results obtained using AS 1170 to estimate the building wind responses are summarised in Figures 11-14 and Tables B1-B4 in Appendix B, together with the results of the other methods. Terrain category 3 was assumed for all the AS 1170 computations.

Comparison of the gust factors from AS 1170 with the values from the other methods shows that the AS 1170 method generally gives close to the highest or the highest gust factor value. However, the AS 1170 values are never significantly greater than the Solari (1983) and Simiu and Scanlan (1986) values.

The peak along-wind base moments from AS 1170 are, in all cases, higher than from the other methods although, for the taller buildings, they are not significantly greater than the next highest value. One reason for the AS 1170 values being higher than the NBCC results is that the AS 1170 leeward pressures are computed from the wind speed at the top of the building, whereas the NBCC values are based on the midheight wind speed.

AS 1170 gives both static and dynamic methods for calculating the base moments. The static method uses the peak wind speed at the top of the building to calculate pressures, and the dynamic method uses the mean wind speed at the top and the gust factor. Both static and dynamic base moments were computed for the ultimate limit state wind speeds, and it was found that the ratio of the peak dynamic moment to the static moment was generally in the range 0.85-0.96 for all the buildings analysed. That is, the peak dynamic base moment was always less than the static moment. Thus the static approach can be expected to give a conservative base moment generally within 15 per cent of the peak dynamic moment.

A good approximation (within 5 per cent) for the moment ratio can be found from:

 $\frac{\text{peak dynamic moment}}{\text{static moment}} = \frac{G}{\frac{V^2/V^2}{p}}$
```
where G = gust factor

V_p = peak wind speed at 0.67 h = V

p_p^{0.67h}

V_m = mean wind speed at 0.67 h = V

h = building height
```

The approximate expression for (V_p^2/V_p^2) given on page 30 can be used in p m the above expression. Expressions given for the gust factor in AS 1170 are reasonably complex, and it is therefore unlikely that the gust factor would be calculated unless the complete dynamic analysis procedure was being followed. However, the above expression for the moment ratio can be used for checking purposes.

The across-wind accelerations from AS 1170 for the serviceability wind speeds are all significantly greater than values obtained by the other methods. This result suggests that the values of the across-wind force spectrum presented in AS 1170 may be overly conservative over the reduced velocity range of interest which is typically between 0.2 and 5 for buildings. The along-wind accelerations are within the range of the other methods.

An analysis was carried out to determine the sensitivity of the AS 1170 response outputs to the various building and wind input parameters. As for the case of the NBCC results, this analysis was restricted to Buildings C and I, which were considered to be reasonably typical of tall concrete and steel buildings respectively. For each building, the analysis was performed using the appropriate wind speeds and damping factors for the Auckland regional ultimate and serviceability wind speeds. The results of the analyses are shown in Tables 3 and 4. In a similar manner to the NBCC sensitivity analysis described above, each of the input variables tabulated was independently increased by 20 per cent and the change in the output parameters computed as a per cent change from the value obtained using the unaltered input parameters.

The results in Table 3 show that the gust factor is relatively insensitive to the various building parameters, and is influenced most by the building height. In contrast, the NBCC gust factor is more sensitive to basic wind speed and the building parameters, with the exception of height, than the AS 1170 gust factor.

Because of the relative insensitivity of the gust factor to most of the input parameters, it is possible to derive simple approximate expressions for it by regression analysis of the results. A simple expression relating gust factor to height is:

```
G = 4.8h^{-0.15}
where G = gust factor
h = height of building
```

This expression was calculated by regression analysis assuming a category 2, 10 m height, mean basic wind speed of 30 m/s and building damping factor of 5 per cent.

Table 3: Changes in AS 1170 Responses for 20% Increase in Input Parameters: Auckland Ultimate Limit State Wind Speed

(a) = Building C (5% damping) (b) = Building I (2% damping)

INPUT	GUST F	ACTOR	CHANGE II ALONG MOM	ACROSS-WIND		
	(a) (b) (a) (b)				(a)	(b)
Basic 10 m wind speed	1.8	2.7	47	48	69	64
Height	-4.7	-4.1	49	48	54	53
Width	-0.8	-1.0	19	19	-5.6	0
Damping	-0.8	-1.0	-0.8	-1.0	-8.7	-8.7
Frequency	-1.3	-1.9	-1.3	-1.9	-11.4	-9.1
Building density	0	0	0	0	0	0

Table 4: Changes in AS 1170 Responses for 20% Increase in Input Parameters: Auckland Serviceability Wind Speed

•

•

INPUT PARAMETER	ALONG ACCELE (a)	-WIND RATION (b)	<pre>% CHANGE II ACROSS ACCELEI (a)</pre>	N RESPONSE S-WIND RATION (b)	RESU ACCELE (a)	ULTANT CRATION (b)
Basic 10 m wind speed	71	73	69	64	69	67
Height	-1.8	-1.9	6.3	6.3	3.7	3.9
Width	14	13	-0.2	-0.2	2.5	4.0
Damping	-8.7	-8.7	-8.7	-8.7	-8.7	-8.7
Frequency	-15	-16	-9.1	-13	-13	-11
Building density	-17	-17	-17	-17	-17	-17

,

(a) = Building C (1.5% damping) (b) = Building I (1% damping)

Another simple approximation to the AS 1170 gust factor was obtained by taking a ratio of the square of the peak wind speed to the square of the mean wind speed at the top of the building. Analytical expressions can be found for the AS 1170 wind speeds by regression fitting to the height multipliers given in the AS 1170 tables. This gave the ratio of the square of the wind speeds as:

$$\hat{v}_h^2 / \overline{v}_h^2 = 4.97 h^{-0.148}$$

where $\hat{v}_h^2 =$ peak speed at the top of building $\overline{v}_h^2 =$ mean speed at the top of building

As was the case with the NBCC results, both the along-wind and acrosswind base moments are very sensitive to the basic wind speed and the building height. The along-wind moment is relatively sensitive to the building width, and the across-wind moment is relatively sensitive to the building natural frequency.

Both the along-wind and across-wind accelerations are very sensitive to the basic wind speed, and are moderately sensitive to the other parameters with the exception that the along-wind acceleration is relatively insensitive to building height. This finding is very similar to that obtained from the NBCC sensitivity analysis.

Simiu and Scanlan

A description of the method, herein referred to as the SAS method, is given in Simiu and Scanlan (1986).

The hourly mean wind speed at the top of the building is obtained from an expression that uses a log function of the height and terrain coefficients. Roughness lengths are specified for various types of terrain, ranging from coastal to centres of large cities.

A gust effect factor is used in a similar manner to the NBCC and AS 1170 methods.

Expressions given for the building response include peak along-wind displacement and acceleration, and peak across-wind acceleration.

The analysis results obtained using the Simiu and Scanlan (SAS) method are presented in Figures 11-14 and in Tables B1-B4, together with the results of the other methods. A dense suburban terrain was assumed for all the SAS computations.

Comparison of the gust factors shows that the SAS method gives values within the range covered by the other methods.

The peak along- and across-wind base moments and the along-wind displacement are generally within the range of values from the other methods. The across-wind accelerations are also in reasonable agreement, but the along-wind accelerations are generally the lowest values obtained. For most buildings, the along-wind accelerations appear to err significantly on the low side.

ESDU

The ESDU method used is described in ESDU 76001 (1976). Calculations were performed using the computer program given in ESDU 84034. A more recent update of this method has been published, but was not available as a computer program, and so was not used in this project.

As with the other methods described above, an analytical gust effect factor approach is used. Different terrains are accounted for by a site roughness parameter. In the analyses for this study, this parameter was assumed to have a value of 0.2 m, which is the value assumed in the category 3 terrain used in AS 1170.

The ESDU computer program gives response outputs that include the along-wind displacements, accelerations and base moments. Across-wind response is not considered.

Comparison of the results given in Figure 11 shows that the ESDU gust factors are relatively low and, as explained above, they vary in a similar manner to the NBCC gust factors. The along-wind peak displacements and base moments generally fall within the range of values given by the other methods. The ESDU along-wind accelerations agree reasonably well with the other methods for the tallest buildings investigated, but for the medium height and lower buildings the method gave values which were significantly higher than the other methods.

Loh and Isyumov

This method, herein referred to as the LAI method, uses an empirical approach developed from wind tunnel test results for a range of 24

tall buildings, varying in height between 140 and 339 m. Many of the buildings were non-rectangular in plan form. Expressions are given for both along- and across-wind peak accelerations. Details of the method are given in Loh and Isyumov (1985).

With reference to Figure 14, both the along- and across-wind accelerations predicted by the LAI method are generally at the low end of the range of the values obtained from the other methods reviewed.

Solari

This is an analytical method following the same principles used by Simiu and Scanlan. Further details are given in Solari (1985).

In this study, only the gust factor was computed. However, éxpressions are given for along-wind displacement and acceleration.

A comparison with the other methods shows that the Solari gust factors are relatively high, but generally in agreement with the AS 1170 and SAS values.

(A) WELLINGTON SERVICEABILITY WIND SPEED

32

.

•

(B) WELLINGTON ULTIMATE WIND SPEED

Figure 11: Comparison of Gust Factors Calculated for a Selection of Buildings of Different Heights

(A) ALONG-WIND OVERTURNING MOMENTS

,

(B) ACROSS-WIND OVERTURNING MOMENTS

Figure 12: Comparison of Along- and Across-Wind Design Moments (Wellington Ultimate Wind Speed)

(A) WELLINGTON SERVICEABILITY WIND SPEED

(B) WELLINGTON ULTIMATE WIND SPEED

Figure 13: Comparison of Along-Wind Displacements

.

(A) ALONG-WIND ACCELERATIONS

35

(B) ACROSS-WIND ACCELERATIONS

Figure 14: Comparison of Along- and Across- Wind Accelerations (Wellington Serviceability Wind Speed) European

As outlined in Ghiocel and Lungu (1975), a number of European countries use a empirical method based on the work of a Russian researcher, Barstein. Countries that use this method include the Soviet Union, Rumania and France. The method provides a simple expression for computing the gust factor from the building height, frequency and damping. The damping is included by specifying a dynamic factor that is a function of period and structure type.

The gust factors computed for steel and reinforced concrete buildings are compared with the values from the other methods in Tables B1 and B2. Although the gust factors compared favourably with the other methods for the taller buildings, values for the smaller reinforced concrete buildings were at the low end of range.

Comparison of Analysis Methods with Wind Tunnel Results

Central Laboratories' wind tunnel test results for along- and acrosswind accelerations and base bending moments were available for five of the buildings used in the above comparisons. These results are compared in Table 5 with predictions made using five of the analysis methods. The wind tunnel mean wind speed at the top of the building was used as the wind input for each of the analyses. For most of the buildings, test results were available for the 1, 10 and 50 year return period wind speeds. Results have been tabulated for all available wind speed runs.

From the along-wind accelerations results, it is clear that the AS 1170, NBCC and ESDU methods provide acceptable predictions. The

SAS and LAI predictions are significantly lower than the test results.

The SAS and NBCC methods provide satisfactory predictions for the across-wind accelerations. However, for most of the buildings, the predictions are on the low side. The AS 1170 method gives results that are significantly too high, and the LAI method gives results that are significantly too low.

The AS 1170 method gave conservative but acceptable along-wind base moment predictions for all buildings. The ESDU and SAS methods generally gave moments lower than the test results, but agreement was reasonable. Results from NBCC tended to be rather low for most cases.

Unfortunately, there was no one method that gave very good agreement for all three of the response parameters investigated.

In making the above comparisons, no allowance was made in the analytical methods for any shielding of surrounding buildings. Surrounding buildings and topographic effects were included in the wind tunnel models (except for the Commonwealth Advisory Aeronautical Research Council's (CAARC) standard tall building). However, in most cases, the buildings were significantly higher than the surrounding buildings and shielding effects would have been relatively small. Also, the results given in Table 5 for the wind tunnel tests correspond to the maxima obtained from a variety of different wind directions.

Table 5: Comparison of Wind Analysis Methods with Test Results

******		CAARC BUILDING REFERENCE													
		Build 1-Y	λ 1-Υ	λ 10-Υ	λ 50-Υ	В 1-Ү	В 10-У	В 20-У	В 50-У	С 1-Ү	С 10-У	.С 50-Ү	D 1-Y	D 10-Y	D 50-Y
BUILDING INPUT PAR	AMETERS														
Reight	n	183.9	154.0	154.0	154.0	143.6	143.6	143.6	143.6	126.6	126.6	126.6	121.0	121.0	121.0
Width (Equiv)	- D	45.7	40.4	40.4	40.4	57.6	57.6	57.6	57.6	42.2	42.2	42.2	42.1	42.1	42.1
Depth (Equiv)	D	30.5	38.1	38.1	38.1	37.0	37.0	37.0	37.0	35.4	35.4	35.4	35.0	35.0	35.0
Area (Actual)	m^2	1394	1480	1480	1480	1220	1220	1220	1220	1200	1200	1200	1140	1140	1140
Building Density	kq/n^3	160	164	164	164	286	286	286	286	256	256	256	257	257	257
Mass/Unit Height	t/n	223	243	243	243	349	349	349	349	307	307	307	293	293	293
Nat Freq, Along	Hz	0.200	0.190	0.190	0.190	0.218	0.218	0.218	0.218	0.229	0.229	0.229	0.346	0.346	0.346
Nat Freq, Across	Ηz	0.200	0.206	0.206	0.206	0.290	0.290	0.290	0.290	0.251	0.251	0.251	0.376	0.376	0.376
Crit Damp Ratio		0.010	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.010	0.010	0.020	0.010	0.010	0.020
WIND INPUT: MEAN S	PEED AT	TOP			<u></u>	<u></u>					·-···			- <u>-</u> •	<u>-, , , , , , , , , , , , , , , , , , , </u>
Mean Speed at Top	n/s	32.5	20.5	26.0	29.9	19.9	23.8	25.1	30.0	19.2	24.2	27.8	26.5	33.4	34.9
ALONG WIND PEAK AC	CELERATI	ON nil	li-g			·									
Test Result		24.1	6.3	12.6		3.7	6.9	8.9	14.6	3.4	7.1		7.5	13.7	
AS 1170 (Nov 1988)		22.3	4.0	8.1		2.9	5.1	6.0	10.4	3.6	7.3		6.9	14.1	
NBCC		25.4	4.3	8.9		3.0	5.3	6.2	10.9	3.7	7.7		7.1	14.7	
Simiu & Scanlan		15.4	2.6	5.5		1.9	3.4	4.0	7.1	2.4	5.0		4.6	9.6	
ESDU		25.1	6.1	10.9		5.0	7.7	8.9	13.3	5.9	10.5		10.2	17.9	
Loh & Isyumov		15.7	3.5	6.2		2.0	3.1	3.6	5.5	2.9	5.1		5.7	10.0	

.

•

ACROSS WIND PEAK ACCELE	RATION ni	lli-g												
Test Result	35.5	5.8	13.9		3.2	5.8	6.1	10.0	7.7	16.3		6.4	13.2	
AS 1170 (Nov 1988)	55.2	12.1	22.9		7.0	10.7	12.1	18.5	10.7	19.1		21.3	37.9	
NBCC	36.6	4.8	10.7		2.0	3.7	4.4	8.0	3.6	7.7		6.6	14.2	
Simiu & Scanlan	41.8	5.6	12.6		2.2	4.0	4.8	8.8	4.6	10.1		8.5	18.8	
Loh & Isyumov	20.8	3.9	7.3		2.0	3.2	3.7	5.9	3.1	5.8		6.0	11.2	
ALONG WIND PEAK DISPLAC	EMENT D											<u></u>		<u></u>
NBCC	0.32	0.10	0.16		0.06	0.09	0.11	0.16	0.05	0.09		0.04	0.08	
Simiu & Scanlan	0.31	0.11	0.18		0.07	0.11	0.12	0.18	0.05	0.09		0.05	0.08	
ESDU	0.33	0.11	0.18		0.08	0.11	0.13	0.19	0.06	0.10		0.05	0.08	
ALONG WIND PEAK BASE NO	NENT KN I	0				<u> </u>			<u></u>					-
Test Result				559				809			426			620
AS 1170 (Nov 1988)				726				888			451			641
NBCC				586				680			348			488
Simiu & Scanlan				646				7 87			393			564
ESDU				645				769			394			539
ACROSS WIND PEAK BASE MO	DMENT MN R	 !		<u> </u>										<u> </u>
Test Result				305				200			201			
AS 1170 (Nov 1988)				644				230 838			201 212			347
NBCC				335				478 258			JLJ 171			419
Simiu & Scanlan				386				208			186			209 216

COMPARISON OF WIND AND EARTHQUAKE LOADS

In order to assess the relative magnitude of wind and earthquake lateral loading, four buildings ranging in height from 28 to 127 m were analysed using both the current and proposed New Zealand code loadings. Details of the buildings analysed and the base moments and shears obtained from both the wind and earthquake analyses are given in Table 6.

The buildings were analysed for both the Auckland and Wellington specified loadings. The following loading conditions were investigated.

(a) Wind loads from NZS 4203 : 1984

The 50 year return period wind loads were increased by the specified factor of 1.3 to bring them up to the ultimate limit state level. The NZS 4203 50 year design speeds for Auckland and Wellington are 33 and 50 m/s respectively.

The base shears were computed using the assumption of a uniform pressure equal to 0.9 times the pressure at the top of the building (as recommended in Commentary, Clause 4.4.5).

The dynamic "overshoot" factor of 1.7, specified in Clause 4.4.6 for buildings with periods between 2 to 6 seconds, was not used. It was considered that this factor is inappropriate for the buildings investigated.

(b) Wind loads from dynamic analysis method of 2/DZ 4203 : 1989

The draft code DZ 4203 permits both static and dynamic analyses methods. For the dynamic analyses, reference is made to the AS 1170 In the analyses carried out for this comparison, the procedure. dynamic analysis procedure given in AS 1170.2 - 1989 was used. The wind speeds were taken from the maximum basic regional ultimate limit state design wind speeds given in 2/DZ 4203, i.e. 46 and 50 m/s for Auckland and Wellington respectively. These wind speeds were modified for terrain category 3 conditions and the height multiplier, but were not corrected for any of the other factors such as site height, shielding, and local topography.

From the assessment of AS1170.2-1989 presented on page 27, the dynamic analysis method gives wind base moments about 90 per cent of those obtained by the static analysis method.

- (c) Earthquake loads from NZS 4203 : 1984, static method rigid and intermediate sub-soils
- (d) Earthquake loads from NZS 4203 : 1984, dynamic modal analysis method - rigid and intermediate sub-soils

In this method the code requires the dynamic base shear to be scaled to 90 per cent of the static analysis method. The code requires that accidental eccentricity of the masses be considered, but as it is unlikely that this requirement would significantly affect the Table 6: Comparison of Wind and Earthquake Base Shears and Moments Ultimate Limit State Wind Speeds

• <u> </u>	·		··						
		C		P I					
BUILDING INPUT PARAMETER	S						<u>-</u>		<u>-</u>
Height, h	Ш	126.6		109.6		69.9		28.3	
Width, b (Equiv)	Ш	42.2		44.2		35.0		44.0	
Depth, d (Equiv)	D	35.4		23.0		28.0		19.4	
Area (Actual)	m^2	1200		1017		980		854	
Building Density	kg/m^3	256		224		210		226	
Natural Freq, Along	Hz	0.229		0.320		0.432		0.661	
Critical Damp Ratio		0.050		0. 050		0.050		0.050	
WIND: BASE SHEARS		Wgtn	Auck	Wgtn	Auck	Wgtn	λuck	Wgtn	Auck
NZ 4203	MN	15.6	6.8	13.7	6.0	6.2	2.7	2.7	1.2
λS 1170 (Dynamic Anal)	KN	11.8	9.9	10.1	8.5	4.7	3.9	1.9	1.6
EARTHQUAKE: BASE SHEARS		Wgtn	Auck	Wgtn	Auck	Wgtn	Auck	Wgtn	Auck
NZ 4203 (Static)	KN	20.7	13.8	12.7	8.5	8.8	5.9	3.1	2.1
NZ 4203 (Modal Anal)	MN	18.6	12.4	11.4	7.7	7.9	5.3	2.8	1.9
DZ 4203 (Nodal Anal)	HN	6.0	3.0	5.4	2.7	5.2	2.6	2.9	1.5
WIND: BASE OVERTURNING	HOHENT	Wgtn	Auck	Wgtn	λuck	Wgtn	λuck	Wgtn	Auck

NZ 4203	HN m	1088	474	824	359	237	103	41	18
AS 1170 (Dynamic Anal)	HN m	809	679	603	508	178	149	28	24
EARTHQUAKE: OVERTURNING	MOMENTS	Wgtn	Auck	Wgtn	Auck	Wgtn	Auck	Wgtn	Auck
NZ 4203 (Static)	MN m	1880	1253	925	617	358	239	60	40
NZ 4203 (Nodal Anal)	MN m	1589	1059	810	540	358	239	59	39
DZ 4203 (Nodal Anal)	MN m	516	258	362	181	212	94	55	28

comparisons made, for convenience in the analyses, no eccentricity was added to the mass locations.

All buildings were assumed to have the RSM factor = $1.0 \times 0.8 \times 0.8 = 0.64$.

(e) Earthquake loads from 2/DZ 4203 : 1989, dynamic modal analysis method - normal soils

All buildings were assumed to have risk factors of 1 and ductility factors of 6.

As with the NZS 4203 modal analysis method, the analyses were performed without applying the accidental eccentricity factor to the mass locations.

From the results in Table 6 it can be seen that, under the current code provisions (NZS 4203 : 1984), earthquake design loads dominate up to heights of at least 100 m. Above this height the specified wind loads may become critical for some buildings in Wellington. In fact, buildings in excess of 100 m in height are usually subjected to wind tunnel studies and, unless the site is very exposed, it is likely that earthquake loads would dominate for heights well in excess of 100 m. In the case of Auckland, because of the relatively low specified wind speeds, earthquake loads dominate for heights well in excess of 100 m. (This conclusion is based on the assumption that the 1.7 "overshoot" factor is not applied.)

The comparisons made in Table 6 show that there are major differences between both the wind and earthquake loads specified in NZS 4203 and

2/DZ 4203. Although there are differences in the wind design analytical procedures used in the two codes, a major part of the difference in the base forces arises because of changes in the specified wind speeds. For Wellington, the basic ultimate limit state regional speed given in 2/DZ 4203 is 50 m/s. The same speed is specified in NZS 4203 but this is for a 50 year return period, and it is effectively increased for limit state return periods by the 1.3 factor used in the load combination expressions. For Auckland, the basic ultimate limit state regional speed given in 2/DZ 4203 is 46 m/s and this is significantly higher than the NZS 4203 50 year return speed of 33 m/s. Although the 1.3 load factor reduces the difference between the loads derived from the two codes, the difference remains significant because the loads vary as the square of the wind speeds.

The differences between the earthquake loads specified in 2/DZ 4203 and NZS 4203 are best illustrated by the comparison between the respective response spectra shown in Figure 15. The reductions in the 2/DZ 4203 spectra are significant in Wellington for periods longer than 2.0 s, and in Auckland for periods greater than 0.5 s. The Auckland spectrum is in fact reduced by a factor of about 3 at a 3.0 s period, and the Wellington spectrum by a factor of about 2 at this same period.

NZ 4203 & DZ 4203 Spectra: Wgtn & Auck

41

Figure 15: Comparison of DZ 4203 and NZS 4203 Earthquake Response Spectra

The main effect in Wellington of the proposed code revision is a significant reduction in the earthquake forces for buildings with first mode periods longer than 2.0 s. This will result in wind dominating the lateral load design for all buildings taller than about 100 m and buildings taller than about 80 m on exposed sites.

Because of an increase in the proposed design wind speeds and the reduction in the earthquake spectrum for all but the shorter period buildings, the proposed changes for Auckland result in a very significant net change between the relative magnitude of wind and earthquake loads. It seems likely that wind will dominate the lateral load design for most buildings over about 40 m in height. The exact dividing line between wind and earthquake loads will again depend on the terrain and shielding effects.

In cases where wind loading dominates the lateral load design, it may be possible to design for lower ductility demands under earthquake load, but in most cases it will be necessary to provide detailing for relatively high ductility demands. For example, if the wind loading exceeds the earthquake loading by 50% for a ductile frame, it is still necessary to obtain an overall ductility factor of 4 under earthquake loading.

The provision of ductility for ultimate limit state wind loads is an area requiring further investigation.

CALCULATION OF STRUCTURAL PARAMETERS

Building Frequencies and Periods

All the dynamic analysis methods require an estimate of the building first mode frequency or period. Calculation of both the along- and across-wind responses requires frequencies in both principal directions.

Along-wind displacement and acceleration and across-wind acceleration are relatively sensitive to the building frequencies, with an error in the frequency estimation resulting in a similar percentage error in these responses.

Building periods are readily computed by modal elastic analysis programs such as ETABS (a structural analysis computer program for three dimensional analysis of building systems). However, for preliminary design, it is necessary to have simple approximate expressions for first mode periods as a function of the basic building In order to develop a suitable expression for typical parameters. multi-storey buildings designed to the New Zealand codes, a regression analysis was carried out on the periods of buildings analysed in this In most cases, the periods were obtained from the design study. agency and had been computed by dynamic elastic methods. For the concrete frame buildings, the period computations were based on the usual assumptions for earthquake design of cracked section properties for the beams and uncracked properties for the columns.

The relationship of the period to the building height, floor area, depth, density and mass per unit height was investigated. It was found that the period was only well correlated to height and was reasonably insensitive to the other parameters. Also, inspection of the computed periods for buildings with relatively large variations between the depth and width dimensions showed that the periods in the two principal directions were generally quite similar.

The following relationship between period and height was obtained by the regression analysis:

where T = first mode period for either of the principal directions.

The equivalent expression for frequency is:

n (Hz) = 7.6
$$h^{-0.71}$$

Most of the buildings analysed were concrete frame buildings, and it would therefore be expected that the above expressions would give periods and frequencies within 20 per cent of computed values based on the cracked beam assumption for reasonably typical buildings of this type. However, the expressions also gave good estimates for the limited number of steel frame buildings investigated. It would thus appear that, although steel frame buildings are lighter than concrete frame buildings, the reduction in building mass is compensated by a similar reduction in stiffness to result in comparable periods for buildings constructed of either material.

In the design of reinforced concrete frame structures to resist earthquake loads, it is normal procedure to provide ductility by allowing plastic hinges to form in the beams. Columns are designed to be stronger than the beams in joint regions and therefore do not undergo significant plastic deformation. Periods of vibration for ultimate limit state earthquake loads are based on cracked section properties for the beams, and uncracked section properties for the columns. Beam cracked section properties are usually estimated by taking one half of the gross section properties. On the basis that for many buildings design wind loads exceed 50 per cent of the earthquake loads, cracked beam properties should also be used in computing the ultimate limit state wind response.

Under serviceability level wind loads, the beam moments may not be sufficient to cause extensive cracking. However, if the building has previously been subjected to moderate earthquake or high wind loads, then the beams will be already cracked and will respond in a cracked section manner under serviceability loads. The extent of beam cracking may depend on the degree of conservatism used in the beam design, and whether standardisation of beam dimensions is used up the height of the building rather than optimisation based on force levels. It is recommended that cracked section properties should generally be used in computing building periods for serviceability limit state wind response predictions. If upper level beams are not highly loaded under ultimate limit state conditions, then judgement should be used in selecting periods between the fully cracked and uncracked beam values for serviceability analyses. Periods were computed for five of the concrete frame buildings analysed in this study using both uncracked and cracked beam properties. The first mode periods for the cracked beams assumption were between 15-27 per cent higher than for the uncracked condition.

It is clear from the sensitivity analyses performed on the NBCC and AS 1170 methods that over-estimating the periods (under-estimating the frequencies) will result in a conservative estimate of all the wind response parameters (displacements, accelerations and base moments). That is, using cracked section properties will give conservative estimates for the wind responses.

Damping

The four main sources of damping in buildings are:

- (a) hysteretic damping in the structural materials;
- (b) foundation soil damping from radiation of energy and internal damping in the soil;
- (c) frictional damping between structural components and architectural finishes;
- (d) aerodynamic damping due to the fanning action of the building in the wind.

Internal damping in steel and concrete in the linear stress strain range is quite small. However, internal damping increases significantly with non-linear behaviour such as caused by cracking in

concrete.

The contribution from foundation damping is quite low for tall buildings, but increases as the height is decreased.

Frictional damping is probably the main component of the total damping in steel buildings and in concrete buildings at stress levels below the commencement of cracking.

Aerodynamic damping may become significant for tall buildings (over 120 m) in strong winds (Davenport and Hill-Carroll, 1986).

There are no reliable analytical methods for estimating damping in buildings. Although expressions for computing hysteretic damping and aerodynamic damping values exist, there is no method available for calculating the frictional component. Most estimates of damping used in dynamic analyses are therefore based on information from forced and ambient vibration tests of buildings.

A detailed summary of measured damping values from vibration tests of buildings is given by Early (1989). Davenport and Hill-Carroll (1986) have developed, from an analysis of the results on tests of 165 buildings, the following expression for expected damping expressed as a fraction of critical viscous damping:

$$\xi = a(x/h)^n$$

where x/h = the ratio of the rms amplitude in mm to the building height in m

a,n = constants defined as follows:

		a	n
5-20 Storey	Steel	0.03	0.075
	Concrete	0.03	0.11
20 Storey	Steel	0.02	0.11
	Concrete	0.025	0.11

Damping values for the buildings analysed in this study were evaluated using the above expression and the NBCC method of computing along-wind displacement response. For the serviceability wind speeds, the damping values computed ranged from 0.016 to 0.022 and, for ultimate limit state wind speeds, the values ranged from 0.018 to 0.024.

ESDU 76001 gives typical damping values for steel and concrete buildings in the range of 0.01 to 0.02.

AS 1170 specifies the following damping values:

Serviceability	Steel frame Reinforced or prestressed concrete	0.005 to 0.010 0.005 to 0.010
IIltimate	Steel frame welded	0.02
Offindre	Steel frame bolted	0.05
	Reinforced concrete	0.05

In view of all the information available, these AS 1170 recommendations appear reasonable values for design. A serviceability value of 0.01 would appear to be appropriate for reinforced concrete where period estimates are based on uncracked section properties. However, if cracked section properties are used, a damping ratio of at least 0.015 should be adopted on the basis of the studies of Davenport and Hill-Carroll (1986).

The 0.05 values recommended for ultimate limit state is high in relation to the Davenport and Hill-Carroll expression. Nevertheless, values as high as these have been obtained from back analysis of records from buildings subjected to moderate earthquakes. It would also be expected that with the onset of significant cracking, non-linear behaviour and minor damage, that there would be quite a steep rise in damping values with increasing amplitudes. Damping in the "ultimate" range has not been measured in any of the forced or ambient tests that formed the basis of the Davenport and Hill-Carroll expression.

BUILDING DYNAMIC SERVICEABILITY UNDER WIND LOADING

Wind Drift Design

Limits for wind deflections or the relative deflection between adjacent floors in buildings are specified in many wind loading and design codes (eg, NZS 4203 : 1984; NBCC, 1985). In some cases these limits are given as recommendations rather than as mandatory requirements.

The reasons for requiring deflection limits in buildings are discussed in Cooney and King (1988) and by the American Society of Civil Engineers (ASCE) Task Committee on Drift Control of Steel Building Structures (1988). In summary, the main reasons for adopting wind drift deflection limits are:

- (a) to limit damage to the cladding on the building facade and to partitions and interior finishes;
- (b) to reduce the effects of motion perceptibility;

(c) to limit the P-delta or secondary loading effects.

Drift limits can be specified in terms of an average for the building (usually specified as the ratio of top deflection/building height), or in terms of a storey drift. In defining storey drift, two components are usually considered (refer Fig. 16). The first is the shear or "racking drift" which is the component of the relative movement of the adjacent floors measured in a direction parallel to the floors. The second is the component of displacement or "chord" drift caused by the relative rotations between floors. The sum of these two components gives the total storey drift or the difference in horizontal displacement between adjacent floors. With regard to damage in the partitions and facade cladding, it is usually only the shear drift component that induces significant loads in these non-structural elements.

Drift damage limits for cladding and partitions should be specified in terms of serviceability wind speeds, and the limit should be related to the type of non-structural materials used and the methods of fixing. For example, an unlined industrial building with metal cladding can tolerate significantly larger drifts than an apartment building fitted out with dividing walls lined with plaster board or masonry infill walls.

Because there is a lack of information available on the performance of partitions and cladding systems under racking loads (and a wide range of different systems are used), it is difficult to establish a rational basis for specifying drift limits. Currently used limits appear to be based on judgement developed from satisfactory past performance of buildings. The following limits for the prevention of damage to non- structural elements from Cooney and King (1988) provide some guidance:

d_l = storey total drift d = storey racking drift d_c = storey chord drift

Figure 16: Components of Inter-Storey Drift of Tall Buildings

777,

(a) in-plane loading of walls of masonry and plaster
 (b) moveable partitions
 (c) in-plane loads on facades and curtain walls
 (d) fixed glazing
 (e) d < 2 x b < 10 mm

where d = shear or "racking" drift
h = height of wall or cladding unit
b = clearance in window frame

Most cladding systems can be designed and detailed to accept relatively large drifts. Thus an acceptable approach for cladding systems is to carry out a specific design, taking into account the drifts and loads imposed on the cladding under the serviceability wind speeds. For major buildings, this is likely to provide more economical design than obtained by using code-specified general limits that, from necessity, err on the conservative side.

Although the problem of motion perception and human comfort is related to drift limits, it appears that it is best to specify criteria for motion perception acceptability in terms of lateral accelerations. These limits are discussed on pages 49 and 50.

P-delta effects should be considered in the design analysis required

to check strength and stability under the ultimate limit state wind speeds. Methods for calculating these secondary load effects are well established, and there seems to be no need to control them by arbitrarily set drift limits.

If it is accepted that cladding performance and P-delta effects should be considered by specific design, then the only reason for specifying wind load drift limits is to prevent damage to partitions and interior finishes. Unless specific test-based data is available for setting racking drift limits for interior finishings, it is recommended that a limit of h/500 be used for the maximum inter-storey racking drift under serviceability limit wind speeds. This value is consistent with a recommendation given in NBCC (1985), the above values from Cooney and King (1988), and survey results given in ASCE (1988) that indicated that designers of steel framed buildings in USA use a drift limit ranging from between h/600 to h/200. (Note that in some codes and specifications, it is not clear whether the limit refers to average drifts or maximum storey drifts, or whether total drifts or the racking component should be used.)

Wind Induced Vibrations

Buildings that satisfy static lateral drift requirements still may vibrate excessively during wind storms. While such dynamic motion is insufficient to cause any structural damage, it may disturb the building occupants who expect the building to remain stationary under normal conditions. Static lateral drift criteria do not address explicitly the relation between the fluctuating component of structural response and the structural performance necessary to ensure that the building remains serviceable.

The levels at which wind induced structural motion becomes perceptible or intolerable to an individual depends on whether the motion is transient or steady-state, the frequency and duration of motion, the individuals' body position (whether standing, sitting or lying), the preoccupation with the task at hand, co-worker comments, auditory cues from the groaning of the building frame, wind whistling and lifts rattling, and visual cues from looking outside and seeing the horizon move or other objects swinging, as well as the response of the inner ear and other organs. Numerous studies concerned with people's response to structural motion, reviewed by Galambos (1973), have concluded that building acceleration is the best indicator of potential discomfort to building occupants. However, because motion tolerance is a subjective value, which varies from person to person, the amount of building sway permitted may differ between owner and occupant. This indicates the difficulty in trying to be too precise about criteria for occupancy comfort in tall buildings.

People react to individual storms as single events, each of which can be identified by an average rms or peak acceleration, with the average taken in time, during the most intense part (10-20 minutes) of the storm, and in space, over the top floor area of the building. This acceleration can in turn be linked to a distribution of human response. Therefore, the format of most criteria is to set a lower limit to the value of the return period of storms during which a percentage of people (usually 2 per cent for critical working areas

and 10 per cent for normal occupancy) object to the motion.

Most data on motion perception and tolerance have been obtained at frequencies greater than 1 Hz (Galambos, 1973). The data are more limited in the frequency range of 0.08-0.3 Hz which is typical of tall building response. With reference to Melbourne and Cheung (1988), it appears that at building sway and twisting frequencies, the lower threshold (10 percentile) of human perception to horizontal motion, in terms of horizontal peak accelerations, is 0.007 m/s², whereas most people (90 percentile) would perceive an acceleration 10 times greater, i.e. 0.07 m/s^2 .

Based on this and other information, a peak horizontal acceleration limitation of 0.1 m/s² once every year has been recommended by Melbourne and Cheung (1988) for frequencies in the range 0.1-0.3 Hz. This criterion was based on the assumption that a building's motion should not be perceived by the majority of upper level occupants during more than one or two storms per annum. Similar criteria which relate acceptable acceleration levels to storms with a mean recurrence interval equal to the average duration of one tenancy (6-8 years in office buildings) have been suggested by Hansen et al (1973) and Tallin and Ellingwood (1984).

It is useful to have the acceleration criteria expressed for different objection levels and for different return periods. This approach has been adopted by Davenport (1975), his proposed acceptance criteria being presented in graphical form as shown in Figure 17. It can be seen that, for frequent events, the acceptable level is the threshold of perception for a small proportion of the occupants, whereas for rare events limited perceptible motions are considered acceptable.

Super-imposed on Figure 17 are other commonly used benchmark criteria. Although the acceptable acceleration values are in general agreement, they have been obtained primarily from an owner's perspective, i.e. the 2 per cent objection level was derived from interviewing several prominent US building owners/developers to determine the percentage of people in the top one-third of a building they would accept objecting to the sway motion without seriously affecting their renting programme. The 2 per cent objection level represents a "status quo" value. If a larger percentage occurs, the owner may lose money through lease terminations, the building's bad reputation, etc. If a lower value is desired, the owner of the building may expect to pay a higher construction price.

The appropriateness of the 2 per cent objection level for New Zealand conditions is an area which requires further investigation.

*Note: 1 mg = 1 milli-g = 1/1000 of the acceleration due to gravity = 0.01 m/s²

Figure 17: Peak Horizontal Acceleration Criteria for Occupancy Comfort in Buildings

DESIGN PROCEDURE FOR ESTIMATING THE ACTION OF WIND FORCES ON BUILDINGS

Introductory Comments

Three different approaches to the problem of determining design wind loads for buildings are mentioned in the proposed revision to the New Zealand loading code, 2/DZ 4203, which is largely based on the AS 1170.2 - 1989. The first assumes that the dynamic actions of the wind can be dealt with by equivalent static loads defined independently of the structural characteristics of the buildings. This is the so called "static analysis" procedure detailed in 2/DZ 4203. In general, implementation of the static analysis procedure is appropriate for the majority of low and medium rise buildings.

The second approach is to use special wind tunnel tests. Such experimental testing is recommended whenever the buildings are to be located in aerodynamically complex settings (i.e., unusual topography and/or close proximity to nearby structures), or if preliminary calculations suggest that wind loading will dominate the structural design.

The third approach, referred to as "detailed procedure:dynamic analysis" in 2/DZ 4203, is intended primarily for determining the overall wind loading and response of flexible buildings. The approach consists of a series of calculations involving the intensity of wind turbulence for the site as a function of height and of the surface roughness of the surrounding terrain, and properties of the building such as height, width, natural frequency of vibration, and damping.

From the results presented in Table D1 of Appendix D, there appears to be very few practical situations where the static analysis procedure of 2/DZ 4203 will give design loads that are less than those predicted by the dynamic analysis procedure, but this considers only along-wind There is a general trend toward more flexible buildings, response. partly because adequate strength can now be achieved by using higher strength materials that may not provide a corresponding increase in Sway and twisting motion of buildings under wind loading stiffness. therefore require consideration from the may standpoints of serviceability or comfort criteria. This leaves a designer in the position of having to decide whether a full dynamic assessment (using analytical procedures such as presented in Section 4.4 of 2/DZ 4203) or a wind tunnel test is required. The procedure outlined below has thus been developed with the intention of providing the designer with sufficient information to make the appropriate decision using only those properties of the building and its environment which are known, or which can be estimated at the design stage.

Procedural Steps

The following procedure has been derived from the preceding analytical studies and specific wind tunnel tests. It has been evaluated against a large number of actual New Zealand building designs and has been found reliable.

Steps:

(1) Identification of Wind Sensitive Buildings

For strength limit state, a wind sensitive building is defined to have both:

- (a) a ratio of building height divided by square root of plan area greater than 3.3, i.e. $h/\sqrt{A} > 3.3$;
- (b) a first mode period of vibration greater than 3 seconds, i.e. $0.13h^{0.7} > 3$.

A building meeting the above criteria is likely to experience significant across-wind loading and so either a detailed dynamic analysis, as outlined below, or preferably a wind tunnel study should be performed.

A building may not be wind-sensitive in accordance with the above criteria, but may be unacceptable in terms of serviceability considerations. From the analysis presented in Appendix D, serviceability problems of disturbing vibrations may result when the following condition is met:

h^{1.3}/m > 1.6
where h is the building height (m)
m is the mass of the building plus long term live load
for unit height of the building (tonnes/metre)

If a building design fails to meet the above criterion, the procedure given in step (5) below should be carried out to determine the likely acceleration levels.

(2) Determination of Design Loads for Wind Sensitive Buildings

In order to calculate the design loads, the following parameters have to be determined:

(a) The design mean wind speed at the top of the building V_h . This is given by $\overline{V}_{hu} = |V_{\theta} \cdot \overline{M}_{x,\theta} \cdot M_{s,\theta} \cdot \overline{M}_{t,\theta} \cdot \overline{M}_{o,\theta} \cdot \overline{M}_{c,\theta} \cdot M_{e}|_{max}$ where \overline{V}_{hu} = the maximum design hourly mean wind speed at height h, m/s V_{θ} = the basic ultimate limit state design wind speed, V_{u} , in the direction θ

 $\overline{M}_{x,\theta} \cdots M_{e}$ = topographic and shielding multipliers specified in 2/DZ 4203

Because a 10 per cent change in the magnitude of the wind speed for a particular probability level corresponds to approximately a 25 per cent change in the effective wind load, it is essential that the procedure detailed in Section 4.4.2 of 2/DZ 4203 be carefully followed. Alternatively, specialist advice should be sought, particularly if the surrounding topography is unusual or complex.

In deriving the design wind speed, the uncertainty of the building surroundings should be considered. The possibility of a future building nearby can be accounted for by calculating \overline{v} with and without its presence. However, when considering the entire life of 50 or 100 years of the structure, there is clearly uncertainty which cannot be overcome by this approach. Wind tunnel tests reported in Simiu and Scanlan (1986) show that a square building located in urban terrain near a building with similar geometry and dimensions will perform satisfactorily, regardless of the relative position of the two buildings, if it is designed to withstand the loads it would experience in the absence of the neighbouring structure. Therefore, in case of any uncertainty regarding the building's surroundings, the shielding multiplier M_{s, θ} as defined in 2/DZ 4203 should be set to 1.0.

(b) Properties of the building

The following building properties are required:

- n , n = the fundamental sway frequencies along the principal lines of stiffness (calculated using cracked sections for concrete buildings), Hz
- n_θ = the fundamental torsional frequency (calculated using cracked sections for concrete buildings), Hz
- ξ = the structural damping as a function of critical = 0.02 (steel frame welded) or 0.05 (reinforced concrete/steel frame_bolted) for limit state calculations

ρ = the average building density (derived from building mass and long term live load), kg/m³

A = the cross-sectional area,
$$m^2$$

- h = the building height, m
- b = projected frontal width as seen by the wind parallel to the building's x axis, m
- d = projected frontal width as seen by the wind parallel to the building's y axis, m

L = a shape factor defined as L =
$$\frac{\frac{1}{2}(b^2 + d^2)}{\sqrt{bd}}$$

NOTE: For more complex shapes, the building should be represented by an equivalent rectangle with dimensions corresponding to its projected frontal widths as seen by the wind parallel to its principal axes.

Design loads:

A wind-sensitive building should be designed for the largest of the following load cases:

1.0
$$\hat{M}_{x}$$
 or 1.0 \hat{M}_{y}
or 0.8 \hat{M}_{x} + 0.8 \hat{M}_{y}
or 0.7 \hat{M}_{x} + 0.7 \hat{M}_{y} + 0.7 \hat{M}_{θ}

where \hat{M}_x and \hat{M}_y are the design along- and across-wind overturning moments calculated using the procedures detailed in Section 4 of AS 1170.2 - 1989 and \hat{M}_{θ} is the design torsional moment calculated from:

$$\hat{M}_{\theta} = 0.05 \ L^4 hn_{\theta}^2 \left(\frac{V_{hu}}{n_{\theta}L}\right)^2 \left(1 + \frac{0.16}{\sqrt{\xi}} \left(\frac{V_{hu}}{n_{\theta}L}\right)^{0.68}\right)$$

Worked examples, outlining all the calculation steps required for determining the design overturning and torsional moments, are presented in Appendix C.

NOTE: The above procedure assumes that the wind speed for the design return period occurs from a direction which results in the largest aerodynamic response. In contrast, most procedures used for predicting extreme responses from the findings of a wind tunnel study allow for the directional characteristics of both the aerodynamic data and the local statistical wind climate.

Equivalent loading profiles:

The along-wind loading distribution can be approximated by a total equivalent static load distribution W(z) which can be calculated as follows:

 $W(z) = G\overline{W}(z)$

where $\overline{W}(z)$ = mean wind load, N/m

- G = gust factor as defined in AS 1170
- z = vertical distance from the base of the building, m

The mean wind load distribution, W(z), is determined from:

 $W(z) = C_{D} \frac{1}{2}\rho b (\overline{V}(z))^{2}$ where C_{D} = drag coefficient $\overline{V}(z)$ = mean wind velocity of height z from building base, m/s b = building width The variation of wind velocity with height can be determined either by using velocity ratios given in DZ 4203 or from the following relation:

$$\overline{v}_{z} = \overline{v}_{hu} \left(\frac{z}{h}\right)^{\alpha}$$

where $\alpha = 0.21$ for category 3 and 0.33 for category 4.

The across-wind loading is dominated by inertial forces and so the base moment can be produced by a simple triangular distribution varying from zero at the base to a maximum at roof height. This implies:

$$W(z) = \frac{3 \dot{M}}{h^3} z$$

where \hat{M} = peak base overturning moment in the across-wind direction, Nm

(3) Serviceability Considerations for Wind Sensitive Buildings

In order to calculate lateral deflections and accelerations of the building for comparison with various acceptability criteria, the same building properties as for the design load calculations are required, except the damping level is reduced from 0.05 to 0.015. Furthermore, the serviceability mean wind speed at the top of the building, \overline{V}_{hs} , defined as having on average a 5 per cent probability of being exceeded in any year, has to be calculated from the following expression:

$$\begin{split} \overline{V}_{hs} &= \left| V_{\theta} \cdot \overline{M}_{x,\theta} \cdot M_{s,\theta} \cdot \overline{M}_{t,\theta} \cdot M_{i} \cdot \overline{M}_{o,\theta} \cdot \overline{M}_{c,\theta} \cdot M_{e} \right|_{max} \\ \text{where } \overline{V}_{hs} &= \text{the maximum serviceability mean wind speed at height h,} \\ N_{\theta} &= \text{the serviceability limit state wind speed, V}_{s}, \text{ in the direction } \theta \text{ (refer Table 4.3.1 of 2/DZ 4203)}^{s}, \\ \overline{M}_{x,\theta} \cdots M_{e} &= \text{topographic and shielding multipliers specified in 2/DZ 4203} \end{split}$$

If the direction of the maximum serviceability mean wind speed coincides with that of the maximum design mean wind speed, \overline{V}_{hs} can be calculated from:

$$\overline{v}_{hs} = \frac{v_s}{v_u} \overline{v}_{hu}$$

where V and V are the serviceability and ultimate limit state gust speeds given in Table 4.3.1 of 2/DZ 4203.

(a) Calculation of lateral deflections

Until recently, designers of buildings have had to rely on their "engineering judgement" in order to limit the maximum sway under wind

load. The relative magnitude of this movement is quantified by the sway factor Δ/h , in which Δ is the horizontal displacement as measured over a building height, h. A sway factor limitation of 1/500 has been recommended by NBCC (see page 48) unless a detailed analysis is made.

The lateral deflection of a wind sensitive building can be estimated from the following:

$$\frac{\Delta}{h} = 6.0 \times 10^{-3} \overline{v}_{hs}^2 b^{0.55} h^{0.4}/m$$

where Δ = peak along-wind displacement at the top of the building, m \overline{V}_{hs} = maximum serviceability mean wind speed at height h, m/s b = building width, m m = building mass per unit length = $\rho_{b}A$, kg/m

The above expression is suitable only for preliminary design use. The procedure detailed in paragraph 57 of the Supplement to the National Building Code of Canada, 1985, should be applied for a more exact prediction of the maximum wind induced building displacement.

(b) Calculation of wind induced building accelerations

Although many additional factors such as visual cues, body positions and orientation and state-of-mind are known to influence human perception to motion, it appears that when the amplitude of acceleration is in the range of 0.05-0.15 m/s² (5-15 milli-g's), movement of the building becomes perceptible to most people.

Based on this and other information, a tentative acceleration limitation of 0.26 m/s² (26 milli-g's) once every 20 years is recommended for use in conjunction with the equations presented below. This is equivalent to a peak acceleration of 10 milli-g's occurring once every year (refer Fig 17 on page 50).

The empirically derived relationship for resultant horizontal accelerations given on page 58, paragraph (5), is adequate for preliminary design evaluation. However, the along-wind, across-wind, and torsional components may be calculated using the following procedures.

With reference to Section 4 of AS 1170, the along-wind, a, and across-wind, a, accelerations at the top of the building can be calculated from:

$$a_x (m/s^2) = g_p \frac{3\overline{M}}{M_b h} \sqrt{\frac{r^2 sE}{\xi}}$$

where \overline{M} = the mean along-wind overturning moment as defined in AS 1170, Nm

$$M_{b}$$
 = the total building mass = ρ_{b} bdh, kg

$$\begin{array}{l} n_{\chi} = \text{natural sway frequency in along-wind direction, Hz} \\ r = \text{roughness factor as defined in AS 1170} \\ s = \text{size factor as defined in AS 1170} \\ E = a \text{ measure of the available energy in the wind storm as defined in AS 1170} \\ \xi = \text{the damping ratio} = 0.010 \text{ to } 0.015 \\ g_{p} = \text{peak factor} = \sqrt{2 \ln (3600 n_{\chi})} + \frac{0.577}{\sqrt{2 \ln (3600 n_{\chi})}} \\ \text{and} \quad a_{\chi} (\text{m/s}^{2}) = \frac{0.9 \text{ g}_{p}}{\rho_{b} \text{ d}} \ \overline{v}_{hs}^{2} \sqrt{\frac{\pi C_{fs}}{\xi}} \\ \text{where n}_{\chi} = \text{the natural sway frequency in the across-wind direction, Hz} \\ \rho_{b} = \text{the average building density, kg/m}^{3} \\ \text{d} = \text{depth of the building in the wind direction, m} \\ \xi = \text{the damping ratio} = 0.015 \\ C_{fs} = \text{across-wind factor as defined in AS 1170} \\ q_{p} = \text{peak factor} = \sqrt{2 \ln (3600 n_{\chi})} + \frac{0.577}{\sqrt{2 \ln (3600 n_{\chi})}} \\ \end{array}$$

V = maximum corvices bility mean wind cneed at beight b m/c

57

NOTE: The expression for a given above does not appear in AS 1170.2 - 1989. However, its full derivation can be found on pages 15-17 of this report.

The peak torsional-induced horizontal acceleration of the building at a distance ν from the elastic centre can be estimated from:

$$a_{\theta} (m/s^{2}) = \frac{0.003 g_{p} (b^{2} + d^{2})^{3} n_{\theta}^{2} v}{m (bd)^{2} \sqrt{\xi}} \left(\frac{\overline{V}_{hs}}{n_{\theta}L}\right)^{2.68}$$

where $n_A = the fundamental torsional frequency, Hz$

b = width of building in the wind direction, m

$$\xi$$
 = the damping ratio = 0.010 to 0.015

$$\overline{V}_{hs}$$
 = maximum serviceability mean wind speed at height, h, m/s
m = building mass per unit height = $\rho_b A$, kg/m
L = shape factor = $\frac{\frac{1}{2}(b^2 + d^2)}{\sqrt{bd}}$

$$g_{p} = \text{peak factor} = \sqrt{2 \ln (3600 n_{\theta})} + \frac{0.577}{\sqrt{2 \ln (3600 n_{\theta})}}$$

v = distance from elastic centre, m

The expressions for both design torsional moment and torsional-induced horizontal acceleration presented above have been derived from the Simiu and Scanlan method discussed on pages 20-22 of this report. The torsional response calculations have been simplified by assuming a peak factor (g) of 3.8, air density (ρ) of 1.25 kg/m³, and a shape factor for a ^prectangular building of ^awidth, b, and depth, d, i.e. $L = \frac{1}{2}(b^2 + d^2)/\sqrt{bd}$.

Building motion is not expected to be a problem if the following three conditions are met:

$$a_{x} \text{ or } a_{y} \text{ or } a_{\theta} < 0.26 \text{ m/s}^{2}$$

$$0.9 \sqrt{a_{x}^{2} + a_{y}^{2}} < 0.26 \text{ m/s}^{2}$$

$$0.8 \sqrt{a_{x}^{2} + a_{y}^{2} + a_{\theta}^{2}} < 0.26 \text{ m/s}^{2}$$

If a building design fails any of the above serviceability criteria, specialist advice should be sought.

(4) Determination of Design Loads for Rigid Buildings

The design loading for a building classified as <u>not</u> being wind sensitive can be best determined using the static analysis procedure outlined in Section 4.3 of 2/DZ 4203. However, possible loading reductions may result through application of the procedures recommended for wind-sensitive buildings detailed above.

It is generally found that for rigid buildings, the maximum wind loading is in the direction parallel with the wind (along-wind direction). On the basis of the analysis presented on pages 26-30, the static analysis procedure can be expected to give a conservative design base moment which is within 15 per cent of the along-wind base moment derived from the dynamic or "gust factor" procedure. The potential for loading reductions using the dynamic analysis procedure given in Section 4.4 of 2/DZ 4203 appears to increase with increasing building height.

(5) Serviceability Considerations for Rigid Buildings

The procedures outlined above for calculating lateral deflections and accelerations of wind sensitive buildings apply equally as well to buildings not wind sensitive. However, for rigid buildings the following simple expression can be used to quickly assess whether unacceptable accelerations from the standpoint of occupant comfort will occur.

0.06
$$\overline{V}_{hs}^3 h^{0.7}/m < 0.26$$

where \overline{V}_{hs} = maximum serviceability mean wind speed at the top of the building (refer Section 4.4.2 of 2/DZ 4203), m/s

h = height of the building, m

m = mass per unit length over the top one third of the building = $\rho_{\rm b}$ A, kg/m

If a building fails to meet the above condition, the designer should consider seeking specialist advice.

The above expression takes into account both along-wind and acrosswind accelerations (refer Cenek et al, 1989). With reference to the spreadsheet listings given in Appendix B, it will be noted that this expression for the resultant peak acceleration (termed "Empirical" in the listings) gives values which are in close agreement with the National Building Code of Canada and Simiu and Scanlan.

(6) Consideration of Wind Tunnel Model Studies

Buildings which may require wind tunnel study either fall outside existing experience or differ from the norm in their sensitivity to dynamic effects, perceived importance, and economic penalty imposed by wind loading considerations. The following is a checklist which can help to identify situations where wind tunnel model tests are clearly desirable:

- is the building unusually light, slender and/or flexible;
- are the fundamental periods of vibration unusually long for the height of the building;
- is the shape of the building unusual, i.e. does it significantly depart from conventional geometric shapes;
- are the immediate surroundings likely to lead to aerodynamic interference effects;

- are initial estimates using the analytical methods detailed above indicating unusually large loads or accelerations;
- is the torsional resistance low;
- is the centre of structural stiffness eccentric.

The main advantage of a wind tunnel test over a detailed analytical study is that it allows for the directional characteristics of both the aerodynamic data and the local statistical wind climate. Therefore a wind tunnel test can also provide a valuable backup even for a conventional building design.

CONCLUDING REMARKS

The purpose of this report is to serve as a reference guide for issues related to the response of buildings when subjected to the dynamic action of wind. The following aspects of the design process have therefore been addressed:

(a) characterisation of wind loads and the relationship between actual wind action and the simplified loads presented in building codes;

- (b) analysis techniques for predicting building response to wind action;
- (c) performance criteria for safety and serviceability;
- (d) reliability of conventional code design; and
- (e) identification of situations where wind tunnel model studies are desirable.

In preparing the design guide, various analytical methods for predicting wind-induced building loads and motions have been reviewed, and a comparison made with the Canadian and Australian codes and the proposed revision to the New Zealand code. The significant conclusions drawn from this comparative study and their consequences on structural design are as follows.

(1) The determination of the design wind speed for a site is the single most important factor contributing to the calculation of design wind loads on a building. This is because the wind load is proportional to the square of the wind speed. Also, when the wind induces the building to sway or twist, the magnitude of the resulting accelerations is approximately proportional to the cube of wind speed.

The importance of design wind speed is recognised in the revision to NZS 4203, Part 4 Wind loadings for buildings. This contains an extended section on the calculation of wind speeds. However, for hilly cities like Wellington and Dunedin, with a variety of

- complex topography, it is virtually impossible to calculate the design wind speed on any one of the numerous hills and ridges with any degree of certainty. In such situations, consideration should be given to using small scale topographic model wind tunnel tests to estimate the full scale flow field. This procedure is routinely used overseas for cities located in steep terrain (Georgiou et al, 1988).
- (2) The results of a sensitivity analysis indicated that both the along-wind and across-wind overturning moments are very dependent on wind speed and the building height. The along-wind moment is also relatively sensitive to building width, whereas the acrosswind moment is relatively sensitive to the building natural sway period.

The building accelerations are very sensitive to the wind speed and moderately sensitive to both building mass and sway period. It is therefore recommended that all these parameters be determined using fairly rigorous methods. Approximate methods for estimating natural vibration periods should therefore be used with caution.

(3) Factors contributing to poor performance of buildings under wind loading include a lack of symmetry, and eccentricity of the mass and stiffness centres. If this is aggravated by low torsional stiffness, severe torsional motions may result. This effect is in part due to the inevitable eccentricity of the aerodynamic centre itself for some wind directions. The larger the building, in particular the larger the width, the greater the torsional effects are likely to be.

Wind-induced torsional motions can significantly increase the effective horizontal accelerations near the building perimeter. As a result, while the accelerations near the centre of the building may be within acceptable limits, increases in the acceleration due to torsional vibrations may lead to unacceptable conditions near the building perimeter. The level of peak torsional induced horizontal acceleration at the top of the building should therefore be checked.

- 4) It is not usual practice to design damping into a building's structural system. However, any increase in damping is beneficial in reducing both design loads and associated building motions.
- (5) Although the "static analysis" procedure, on which the New Zealand wind loading code is based, over-estimates the along-wind response when compared with "gust factor" based procedures, it nevertheless provides realistic estimates of the largest magnitude of the response which, in some situations, may be due to a combined action of along-wind, across-wind and, sometimes, torsional forces.
- (6) New Zealand buildings generally have relatively low height to width ratios, typically less than 4. Wind tunnel model studies

suggest that for such squat buildings, geometrical considerations are not significant from a wind loading standpoint. Accordingly, for more complex shapes, a building can be adequately represented in analytical studies by an equivalent rectangle with dimensions corresponding to its projected frontal widths as seen by the wind parallel to its principal axes.

(7) A comparison of wind and earthquake loads proposed in 2/DZ4203showed that, for Wellington, wind will dominate the lateral load design for all buildings taller than about 100 m whereas, for Auckland, wind will dominate the lateral design for most buildings over 40 m.

This result suggests that a higher level of sophistication in determining wind loads than in the past is justified. In particular, the directional characteristics of both the local wind climate and aerodynamic data should be allowed for. This is best accomplished through wind tunnel model studies, although the design procedure presented in this report should give response predictions which are consistent with the experimental estimates. Exceptions will be for buildings dominated by across-wind loading or those situations where the influence of the surroundings plays a major role in modifying or determining the action of the wind.

REFERENCES

American National Standards Institute, Inc., American National Standard - Minimum design loads for buildings and other structures, ANSI A58.1 - 1982.

ASCE Task Committee on Drift Control of Steel Building Structures of the Committee on Design of Steel Building Structures (1988). Wind drift design of steel framed buildings, state-of-the-art report. ASCE, Journ. of Struct. Eng., Vol. 114, No. 9, September, pp 2085-2108.

Cenek, P.D., George, S.F. and Wood, J.H. (1989). Designing for building dynamic serviceability under wind loading. Recent Advances in Wind Engineering, edited by T.F. Sun, Pergamon Press.

Cook, N.J. (1987). The designer's guide to wind loading of building structures. Part 1, Building Research Establishment.

Cooney, R.C. and King, A.B. (1988). Serviceability criteria for buildings. BRANZ Study Report SR 14, Building Research Association of New Zealand.

Davenport, A.G. (1975). Tall buildings - an anatomy of wind risks. Construction in Southern Africa, December, pp 19-37.

Davenport, A.G. and Hill-Carroll, P. (1986). Damping in tall buildings : its variability and treatment in design. Building Motion in Wind, edited by Isyumov and Tschanz, ASCE.

Early, M.D. (1989). Determination of damping in tall buildings. Report 89-B9203, Central Laboratories, Works and Development Services Corporation (NZ) Ltd, Lower Hutt, NZ.

Engineering Sciences Data Unit. The response of flexible structures to atmospheric turbulence. ESDU 76001, 1976, London.

Engineering Sciences Data Unit. Computer program to evaluate alongwind loading and response based on ESDU 76001. ESDU 84034, 1984, London.

ETABS. Three dimensional analysis of building systems. Computer program produced by Computers and Structures Inc., Berkeley, California, 1986.

European Convention for Constructional Steelwork (1978). Recommendations for the calculation of wind effects on buildings and structures. Technical Committee T12 - wind effects.

Evans, R.A. and Lee, B.E. (1983). The determination of modal forces acting on three buildings using wind tunnel method. Journal of Wind Engineering and Industrial Aerodynamics.

Galambos, T.V. (1973). Structural deflections - a literature and state-of-the-art survey. National Bureau of Standards, Building Science Series 47, Washington DC, October. Georgiou, P.N., Surry, D. and Davenport, A.G. (1988). Codification of wind loading in a region with typhoons and hills. 4th Int. Conf. on Tall Buildings, Hong Kong and Shanghai, April/May.

Ghiocel, D. and Lungu, D. (1975). Wind, snow and temperature effects on structures based on probability. Abacus Press.

Greig, G.L. (1980). Toward an estimate of wind-induced dynamic torque on tall buildings. ME Thesis, University of Western Ontario, London, Ontario.

Hansen, R.J., Reed, J.W. and Vanmarcke, E.H. (1973). Human response to wind-induced motion of buildings. Journ. of Structural Div., ASCE, Vol. 99, No. ST7, July, pp 1589-1605.

Isyumov, N. (1982). The aeroelastic modelling of tall buildings. Proc. Intern. Workshop on Wind Tunnel Testing, US National Bureau of Standards.

Isyumov, N. and Halvorson, R. (1986). Comparison of predicted and measured dynamic behaviour of Allied Bank Plaza. ASCE - building motion in wind.

Iyengar, H. and Parmelee, R.A. (1985). Designing for human perception of motion in tall buildings. Proc. 5th Nat. Conf. on Wind Engineering, Lubbock, Texas.

Kareem, A. and Cermak, J.E. (1979). Wind tunnel simulation of wind sensitive interactions. ISA Trans., Vol. 18, No. 4, pp 24-41.

Kwok, K.C.S. and Melbourne, W.H. (1988). Dynamic analysis of wind sensitive buildings and structures to wind action - a codified approach. 4th Int. Conf. on Tall Buildings, Hong Kong and Shanghai, April/May.

Littler, J.D., Ellis, B.R., Jeary, A.P. and Lee, B.E. (1988). The measurement of the dynamic response of Sheffield Arts Tower to wind loading. 4th Int. Conf. on Tall Buildings.

Loh, P. and Isyumov, N. (1985). Overall wind loads on tall buildings and comparisons with code values. Proc. 5th Nat. Conf. on Wind Engineering, Lubbock, Texas.

Melbourne, W.H. (1980). Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. Journ. of Wind Eng. and Ind. Aerodynamics, 6.

Melbourne, W.H. and Cheung, J.C.K. (1988). Designing for serviceable accelerations in tall buildings. 4th Int. Conf. on Tall Buildings, Hong Kong and Shanghai, April/May.

National Research Council of Canada. National Building Code of Canada and Supplement, 1985, Ottawa.

Ng, W.K. and Lee, B.E. (1987). Dynamic wind loadings on buildings, Part 1 - prediction of along-wind response. Research Report 87/2, Dept. of Building and Construction, City Polytechnic of Hong Kong.
Simiu, E. (1983). Modern developments in wind engineering, Part 4. Eng. Struct., Vol. 5, October.

Simiu, E. and Scanlan, R.H. (1986). Wind effects on structures. 2nd Ed., John Wiley and Sons.

Solari, G. (1983). Analytical estimation of the along-wind response of structures. Journ. of Wind Eng. and Indust. Aerodynamics, 14, pp 467-477.

Solari, G. (1985). Mathematical model to predict 3D wind loading on buildings. Proc. ASCE, Journ. of Eng. Mech., Vol. 111, No. 2, February.

Standards Association of Australia Loading Code, AS 1170.2 - 1989, March 1989, North Sydney, NSW.

Standards Association of New Zealand. General structural design and design loadings for buildings, 2/DZ 4203, 1988.

Tallin, A. and Ellingwood, B. (1984). Serviceability limit states : wind induced vibrations. Journ. of Structural Engineering, Vol. 110, No. 10, October, pp 2424-2437.

Vickery, B.J. and Davenport, A.G. (1968). A comparison of theoretical and experimental determination of elastic structures to turbulent flow. Wind Effects on Buildings and Structures, Ottawa, Canada, pp 705-738.

Warburton, G.B. (1964). The dynamical behaviour of structures. Pergamon Press.

Willford, M.R. (1983). Wind effects on buildings - structural response. The Arup Journal, December Issue, pp 16-25.

APPENDIX A: DETAILS OF BUILDINGS ANALYSED

The plan forms of the buildings analysed are shown in Figure Al (refer page A3).

(1) Simiu Example. Height = 200 m

Assumed to be a steel frame building. Used as an illustrative example in Simiu and Scanlan (1986).

(2) CAARC Building. Height = 183.9 m

Assumed to be a steel frame building. Standard tall building model for the comparison of simulated natural winds in wind tunnels. Developed by the Commonwealth Advisory Aeronautical Research Council Coordinators (CAARC) in the Field of Aerodynamics, 1969 (Melbourne, 1980).

(3) Canada Example. Height = 183.0 m

Assumed to be a steel frame building. Used as an illustrative example in the National Building Code of Canada (1985).

(4) Building A. Height = 154.0 m

Concrete shear core, 39 level, office tower planned for Auckland. Wind tunnel results available for comparison with numerical analysis.

(5) Building B. Height = 143.6 m

Concrete framed, 36 level, building planned for central Auckland. Wind tunnel results available for comparison with numerical analysis.

(6) Building C. Height = 126.6 m

Concrete perimeter frame, 33 level, building planned for central Auckland. Wind tunnel results available for comparison with numerical analysis.

(7) Building D. Height = 121.0 m

Concrete framed, 29 level, building being constructed in Wellington. Wind tunnel results available for comparison with numerical analysis.

(8) Building E. Height = 118.7 m

Concrete perimeter frame, 34 level, building planned for central Auckland.

(9) Building F. Height = 109.6 m

Concrete perimeter frame, 30 level, building planned for central Wind tunnel results available for comparison with Wellington. numerical analysis.

(10) Building G. Height = 100.0 m

Concrete shear wall, 31 level, building planned for central Auckland.

(11) Building H. Height = 93.8 m

Concrete frame and core shear wall, 30 level, building located in central Auckland. Results of wind tunnel data available for comparison with numerical results.

(12) Building I. Height = 90.2 m

Steel frame, 25 level, building located in Willis Street, Wellington. Field measurement data available for comparison with numerical results. Some human discomfort experienced in severe storms.

(13) Building J. Height = 69.9 m

Concrete framed, 22 level, building located in central Wellington.

(14)-(18) Buildings K-N, P. Heights = 14.0 to 53.0 m

Wass Buller designed concrete frame buildings for Auckland.

(19) Building O. Height = 28.3 m

Concrete perimeter frame building planned for Lower Hutt.

(20)-(22) Auckland University Frame Buildings. Heights = 40.8 to 81.6 m

Concrete frame buildings used by Auckland University in analytical study of earthquake response.

(23)-(26) Auckland University Wall Buildings. Heights = 40.8 to 102.0 m

Concrete shear wall buildings used by Auckland University in analytical study of earthquake response.

A3

PLANFORMS DRAWN TO SAME SCALE (i.e. 1:1750)

Figure A1: Plan Forms of Buildings Analysed

APPENDIX B: COMPARISON OF WIND RESPONSE CALCULATION METHODS

- Table B1 Wellington ultimate limit state wind speed
- Table B2 Auckland ultimate limit state wind speed
- Table B3 Wellington serviceability limit state wind speed
- Table B4 Auckland serviceability limit state wind speed

-

B2

out fold Please **B**1 TABLE

.

TABLE B1

•

•

•

.

timate L Simiu Examp	init Sta CAARC Build	te: Peak Nean NBCC Examp	V10,2 =	30.0 m/s		D 22	BUILDING	REFERENC F	G	E		E.	×	-	×	×	0		Aall 4 5	Hall 3 F	rane4 W	All 2 H		rame3 J	rame3 Wall 1 AU AU
			2	c		5	r		6	F	-	c	>	C	=	;						, ,			
200.0 35.0 1225 200 245 0.175 0.175 0.175 5.71	183.9 45.7 30.5 1394 0.200 0.200 0.200 4.9	183.0 30.5 30.5 930 176 0.200 0.200 6.0	154.0 40.4 38.1 1480 1480 5.26 0.206 4.0	143.6 57.6 37.0 1220 286 0.218 0.218 0.218 0.250 4.1	126.6 42.2 35.4 1200 256 0.229 0.229 0.251 0.251	121.0 42.1 35.0 1140 257 293 0.346 0.346 0.376 3.6	118.7 22.8 22.8 520 287 287 149 0.273 0.273 0.273 0.273	109.6 44.2 23.0 1017 224 228 0.320 0.320 0.320 0.320 3.13	100.0 48.0 32.0 1536 237 364 0.278 0.278 0.270 0.270 2.6	93.8 52.8 19.4 1024 227 233 0.391 2.56 0.476 2.50 2.9	90.2 34.1 34.1 1163 171 171 171 171 0.297 0.297 0.297 0.297 0.297	69.9 35.0 28.0 280 210 210 2.10 2.10 2.31 2.31 0.432 2.31 2.31 2.31	53.0 21.7 11.0 240 340 0.370 2.70 0.370 3.4	52.0 22.6 11.1 250 288 72 0.455 2.20 0.455 0.455 3.3	37.0 30.8 29.7 915 237 217 0.500 0.500 0.500 1.2	37.0 29.5 26.4 780 283 283 221 0.667 1.50 0.667 0.667	28.3 44.0 19.4 854 226 193 0.661 1.51 1.51 0.709 0.050	14.0 71.1 35.0 1380 215 215 297 1.429 0.70 1.429 0.70 0.050	102.0 28.0 21.0 588 200 118 0.190 0.190 0.190 0.190 0.190 0.190	81.6 28.0 21.0 588 200 118 0.300 0.300 0.300 0.300 0.300 0.300	81.6 28.0 21.0 538 200 118 0.300 0.300 0.300 0.300 0.300 0.300 3.33	61.2 28.0 21.0 588 200 1.96 0.510 0.510 0.510 2.5	61.2 28.0 21.0 588 200 118 0.300 0.300 0.300 0.300 2.5		40.8 28.0 21.0 588 200 1.110 0.90 1.110 0.90 1.110 1.110
T TOP OF	BUILDIN	G Ba/S																							
41.0 42.3 42.6 40.6	40.4 41.4 41.3 40.0	40.3 41.3 41.3 39.9	39.2 39.6 39.9 38.7	38.6 39.4 38.2	37.6 37.7 38.4 37.4	37.3 37.3 38.0 37.1	37.1 37.1 37.8 36.9	36.6 36.4 37.2 36.4	36.0 35.5 35.8	35.5 36.0 35.4	35.2 34.6 35.7 35.1	33.5 33.7 33.5	31.8 30.3 31.5 31.8	31.7 30.2 31.3 31.7	29.6 27.7 28.6 29.7	29.6 27.7 28.6 29.7	28.1 25.9 26.5 28.1	24.0 21.7 20.9 24.0	36.1 35.7 36.6 35.9	いい いい い い い い い い い い い い い い い い い い	34.5 34.5	32.6 31.4 32.6 32.7	32.6 31.4 32.6 32.7		30.1 28.4 29.4 30.3
2.34 2.31 2.31	2.30 2.21 2.26	2.36 2.35 2.32	2.26	2.24 1.90 2.18	2.33	2.29 1.89 2.21	2.38 2.31 2.31	2.35 1.94 2.25	2.41 2.29 2.29	2.38 1.91 2.26	2.64 2.35 2.51	2.55 2.41 2.41	2.75 2.36 2.66 2.11	2.72 2.30 2.61	2.82 2.35 2.69	2.79 2.32 2.66 2.19	2.81 2.31 2.68 2.68	2.84 2.36 2.71 2.36	2.55 2.29 2.46 2.21	2.56 2.18 2.18 2.18	2.56 2.18 2.18 2.18	2.61 2.16 2.47 2.13	2.71 2.31 2.58 2.27		2.73 2.25 2.59 2.09
2.56 2.28	2.54 2.27	2.54 2.27	2.55 2.27	2.52 2.25	2.51 2.25	2.39 2.16	2.47 2.21	2.42 2.18	2.47 2.22	2.40 2.16	2.53 2.26	2.52 2.25	2.70 2.38	2.60 2.31	2.64 2.34	2.47 2.22	2.47 2.22	2.11 1.95	2.55 2.27	2.60 2.31	2.60 2.31	2.48 2.22	2.73 2.41		2.17
NA B	2010	1499	1 207	0571	\$07	709	181	۲UY	543	504	RCL	177	וא	60	۶r	96	28	œ ب	350	206	206	105	109	,	42
2005 1905 1982 1730	2106 1873 2011 1778	1422 1315 1357 1230	1207 971 1127 973	1439 1092 1332 1141	807 616 740 646	709 519 558	381 297 350 314	603 435 471	543 388 478 421	504 348 384	328 251 288 273	177 121 149 133	61 43	49 45	38 28 28	26 26 26	28 20 20	6.0 8.3	350 273 314 280	206 149 178 162	206 149 178 162	105 87 80	109 91 85		42 27 29
XX =																									
3740 2160 2679	1836 1413 1649	2659 1484 1765	926 531 649	515 485 329	454 293 351	313 161 182	420 201 254	178 118 199	218 102 153	109 45 88	294 118 144	72 21 25	21 16 21	17 11 14	16.0 3.1 3.7	13.7 2.2 2.5	5.2 1.0 1.1	1.4 0.1	380 203 315	124 61 90	124 90	43 14 19	61 40		2 2
8						1																ŀ			
0 .509 0.494 0.451 0.515	0.498 0.499 0.462 0.558	0.481 0.463 0.439 0.603	0.374 0.405 0.371 0.342	0.256 0.292 0.265 0.253	0.191 0.215 0.199 0.191	0.081 0.095 0.105 0.183	0.152 0.168 0.159 0.248	0.125 0.145 0.134 0.201	0.117 0.135 0.119 0.110	0.089 0.106 0.098 0.161	0.141 0.152 0.151 0.151	0.052 0.060 0.057 0.083	0.109 0.121 0.119 0.095	0.082 0.091 0.074 0.106	0.026 0.029 0.029 0.029	0.014 0.015 0.015 0.015 0.021	0.018 0.019 0.023 0.018	0.003 0.003 0.004	0.496 0.533 0.499 0.264	0.169 0.190 0.132 0.132	0.169 0.190 0.182 0.173	0.050 0.057 0.055 0.100	0.155 0.172 0.169 0.100		0.009 0.010 0.010 0.046
h/(Pea	k Disp)																		1						
393 405 443	369 369 398	381 395 417	412 380 415	561 492 542	661 589 636	1495 1277 1152 660	780 708 746 479	880 754 818 546	853 740 840 906	1052 884 957 582	639 594 597	1345 1165 1227 841	440 445	637 570 703 488	1403 1291 1276 1684	2692 2472 2467 1756	1564 1488 1230 1568	4166 4965 3500 3489	206 191 204 387	483 430 478	483 430 448 473	1218 1069 1113 612	396 355 362 612		4529 4100 4080 8 8 2
	timate L Simite L Sim	Limate Limit State Simiu CALRC Examp Build 200.0 183.9 35.0 45.7 35.0 1325 1225 1394 200 160 200 160 200 160 200 160 200 160 200 160 200 160 200 5.7 41.0 45.7 41.0 40.4 42.3 41.4 42.3 41.4 42.6 41.3 2.31 2.2679 1649 0.493 2.30 2.34 2.30 2.35 2.21 2.36 2.21 2.31 2.36 2.32 2.13 2.41 2.36 2.35 2.27 2.36 2.213 2.37 2.30 3.40.6 40.0 4.1.3 2.36 2.54 2.54 <t< td=""><td>Elimate Limit State: Peak Kean Siniu CAARC NECC 200.0 183.9 183.0 35.0 45.7 30.5 35.0 45.7 30.5 200 160 176 245 223 164 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.201 1.13 1.4 2.13 2.14 2.13 2.13 2.14 2.13 2.13 2.13 2.16 1.13 1.422 1.31 1.4.4 1.33 1.230 2.14 2.13 2.132</td><td>Siniu CLARC Hean V10, 2 200.0 183.9 183.0 154.0 35.0 30.5 30.5 30.1 200.0 160 175 30.5 30.5 35.0 30.5 30.5 30.5 30.1 1225 1394 930 1480 200 160 176 141 35.0 30.5 30.5 30.1 1225 1394 930 1480 200 0.020 0.020 0.190 5.77 4.9 6.0 0.190 5.77 4.9 6.0 0.190 5.77 4.9 6.0 0.050 0.190 5.7 4.9 6.0 0.190 5.77 4.9 6.0 0.190 5.26 2.34 2.30 2.36 2.27 2.27 2.35 2.26 2.36 2.26 2.37 2.36 2.54 2.55 2.54 2.5</td><td>Siaiu CALRC NBCC Hean V10, $Z = 30.0$ B/, $Z = 30.5$ B/, $Z = 30.5$</td><td>Sisiu CLUAR: Hean VIO, $Z = 90.0$ m/s Sisiu CLUAR: HBCC Job St. 100, $Z = 90.0$ m/s 200.0 183.9 183.0 154.0 143.6 1225 35.0 30.5 30.5 30.5 30.1 30.5 40.4 57.6 200.0 1394 930 164 243 319 307.0 5.7 0.020 0.200 0.200 0.200 0.256 4.280 307.0 2.17 0.020 0.200 0.200 0.256 0.290 0.259 0.218 2.13 2.14 41.3 31.7 38.2 37.7 41.0 40.4 40.3 39.2 38.4 37.6 2.13 2.16 2.12 2.13 2.26 2.27 37.7 2.14 2.15 2.27 2.27 2.27 2.25 2.21 2.14 2.15 2.16 2.17 2.12 2.18 2.25 2.13 2.17</td><td>Siniu CLLUC HEAR VID, $2 = 30.0$ m/s 30.0 15.</td><td>Sinin CLARC Macr. Matr. <th< td=""><td>Hean V10, $7 = 100.0$ m/s BUILDING EFFERENCE Sielle CAURC HEAN V10, $7 = 100.0$ m/s BUILDING EFFERENCE Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Siele CAURC Siele CA</td><td>Sishi Prany Build Build Build Stanp Nuc Parap Soc Build Build Stanp Soc Build Build Stanp Soc All All All All All All All All All Al</td><td>Name Name <th< td=""><td>Sinite CLNC NRC A B C D E F G B I 200.0 13.9 13.0 15.0 16.0 16.6 12.6 12.1 11.7 19.6 10.0 9.1 19.6 19.7 19.6 10.0 9.1 19.6 19.6 12.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 9.2 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 11.7 11.6 11.7 19.6 10.0 9.1 11.7</td><td>Simi Isam Curr Law Inc. Inc. Inc. <thinc.< th=""> Inc. <thinc.< th=""> Inc. Inc.</thinc.<></thinc.<></td></th<><td>Simi Cure Pro No. $i = 9.0. vis$ Multike litterine Simi Cure Pro No. $i = 9.0. vis$ Multike litterine No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0$</td><td>New NO72 = 0.00 eV Ni Ni Nime Nime</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></th<></td></t<>	Elimate Limit State: Peak Kean Siniu CAARC NECC 200.0 183.9 183.0 35.0 45.7 30.5 35.0 45.7 30.5 200 160 176 245 223 164 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.175 0.200 0.200 0.201 1.13 1.4 2.13 2.14 2.13 2.13 2.14 2.13 2.13 2.13 2.16 1.13 1.422 1.31 1.4.4 1.33 1.230 2.14 2.13 2.132	Siniu CLARC Hean V10, 2 200.0 183.9 183.0 154.0 35.0 30.5 30.5 30.1 200.0 160 175 30.5 30.5 35.0 30.5 30.5 30.5 30.1 1225 1394 930 1480 200 160 176 141 35.0 30.5 30.5 30.1 1225 1394 930 1480 200 0.020 0.020 0.190 5.77 4.9 6.0 0.190 5.77 4.9 6.0 0.190 5.77 4.9 6.0 0.050 0.190 5.7 4.9 6.0 0.190 5.77 4.9 6.0 0.190 5.26 2.34 2.30 2.36 2.27 2.27 2.35 2.26 2.36 2.26 2.37 2.36 2.54 2.55 2.54 2.5	Siaiu CALRC NBCC Hean V10, $Z = 30.0$ B/, $Z = 30.5$	Sisiu CLUAR: Hean VIO, $Z = 90.0$ m/s Sisiu CLUAR: HBCC Job St. 100, $Z = 90.0$ m/s 200.0 183.9 183.0 154.0 143.6 1225 35.0 30.5 30.5 30.5 30.1 30.5 40.4 57.6 200.0 1394 930 164 243 319 307.0 5.7 0.020 0.200 0.200 0.200 0.256 4.280 307.0 2.17 0.020 0.200 0.200 0.256 0.290 0.259 0.218 2.13 2.14 41.3 31.7 38.2 37.7 41.0 40.4 40.3 39.2 38.4 37.6 2.13 2.16 2.12 2.13 2.26 2.27 37.7 2.14 2.15 2.27 2.27 2.27 2.25 2.21 2.14 2.15 2.16 2.17 2.12 2.18 2.25 2.13 2.17	Siniu CLLUC HEAR VID, $2 = 30.0$ m/s 30.0 15.	Sinin CLARC Macr. Matr. Matr. <th< td=""><td>Hean V10, $7 = 100.0$ m/s BUILDING EFFERENCE Sielle CAURC HEAN V10, $7 = 100.0$ m/s BUILDING EFFERENCE Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Siele CAURC Siele CA</td><td>Sishi Prany Build Build Build Stanp Nuc Parap Soc Build Build Stanp Soc Build Build Stanp Soc All All All All All All All All All Al</td><td>Name Name <th< td=""><td>Sinite CLNC NRC A B C D E F G B I 200.0 13.9 13.0 15.0 16.0 16.6 12.6 12.1 11.7 19.6 10.0 9.1 19.6 19.7 19.6 10.0 9.1 19.6 19.6 12.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 9.2 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 11.7 11.6 11.7 19.6 10.0 9.1 11.7</td><td>Simi Isam Curr Law Inc. Inc. Inc. <thinc.< th=""> Inc. <thinc.< th=""> Inc. Inc.</thinc.<></thinc.<></td></th<><td>Simi Cure Pro No. $i = 9.0. vis$ Multike litterine Simi Cure Pro No. $i = 9.0. vis$ Multike litterine No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0$</td><td>New NO72 = 0.00 eV Ni Ni Nime Nime</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></th<>	Hean V10, $7 = 100.0$ m/s BUILDING EFFERENCE Sielle CAURC HEAN V10, $7 = 100.0$ m/s BUILDING EFFERENCE Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC Sielle CAURC BUILDING EFFERENCE Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Sielle CAURC Siele CAURC Siele CA	Sishi Prany Build Build Build Stanp Nuc Parap Soc Build Build Stanp Soc Build Build Stanp Soc All All All All All All All All All Al	Name Name <th< td=""><td>Sinite CLNC NRC A B C D E F G B I 200.0 13.9 13.0 15.0 16.0 16.6 12.6 12.1 11.7 19.6 10.0 9.1 19.6 19.7 19.6 10.0 9.1 19.6 19.6 12.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 9.2 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 11.7 11.6 11.7 19.6 10.0 9.1 11.7</td><td>Simi Isam Curr Law Inc. Inc. Inc. <thinc.< th=""> Inc. <thinc.< th=""> Inc. Inc.</thinc.<></thinc.<></td></th<> <td>Simi Cure Pro No. $i = 9.0. vis$ Multike litterine Simi Cure Pro No. $i = 9.0. vis$ Multike litterine No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0. vis$ No. $i = 9.0$</td> <td>New NO72 = 0.00 eV Ni Ni Nime Nime</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sinite CLNC NRC A B C D E F G B I 200.0 13.9 13.0 15.0 16.0 16.6 12.6 12.1 11.7 19.6 10.0 9.1 19.6 19.7 19.6 10.0 9.1 19.6 19.6 12.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 19.6 11.7 19.6 10.0 9.1 9.2 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 19.6 10.0 9.1 11.7 11.7 11.6 11.7 19.6 10.0 9.1 11.7	Simi Isam Curr Law Inc. Inc. Inc. Inc. <thinc.< th=""> Inc. <thinc.< th=""> Inc. Inc.</thinc.<></thinc.<>	Simi Cure Pro No. $i = 9.0. vis$ Multike litterine Simi Cure Pro No. $i = 9.0. vis$ Multike litterine No. $i = 9.0. vis$ No. $i = 9.0$	New NO72 = 0.00 eV Ni Ni Nime Nime	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									

•

.

•

.

. .

.

.

.

.

•

.

Please fold out f TABLE B2

TABLE B2

•

.

•

.

•

COMPARISON OF WIND RESPONSE CALCULATION METHODS

Basic Wind Speed: Auck Oltimate Limit State: Peak V10,2 = 46.0 m/s Nean V10,2 = 27.6 m/s

····		·			<u> </u>		В	UILDING	REFERENC	Ē								<u> </u>	····							<u> </u>
	Siniu Exanp	CLARC Build	NBCC Examp	Å	В	с	D	E	F	G	E	I	J	K	L	H	N	0	P	Wall 4 λD	Wall 3 አሀ	Frane4 λΟ	Wall 2 λΟ	Frame3 AU	Wall 1 AU	Frane2 20
BUILDING INPUT PARAMETERS																	<u> </u>		······	<u> </u>						
Height, h Width, b (Equiv) Depth, d (Equiv) Area, A (Actual) Building Density Mass/Unit Height Natural Freq, Along Natural Freq, Along Natural Freq, Across Hz Critical Damp Ratio Slender Coeff, h/A^0.5	200.0 35.0 35.0 1225 200 245 0.175 5.71 0.175 0.020 5.7	183.9 45.7 30.5 1394 160 223 0.200 5.00 0.200 0.200 0.020 4.9	183.0 30.5 30.5 930 176 164 0.200 5.00 0.200 0.200 0.020 6.0	154.0 40.4 38.1 1480 164 243 0.190 5.26 0.206 0.050 4.0	143.6 57.6 37.0 1220 286 349 0.213 4.69 0.290 0.050 4.1	126.6 42.2 35.4 1200 256 307 0.229 4.37 0.251 0.050 3.7	121.0 42.1 35.0 1140 257 293 0.346 2.89 0.376 0.050 3.6	118.7 22.8 22.8 520 287 149 0.273 3.66 0.273 0.050 5.2	109.6 44.2 23.0 1017 224 228 0.320 3.13 0.320 0.050 3.4	100.0 48.0 32.0 1536 237 364 0.278 3.60 0.270 0.050 2.6	93.8 52.8 19.4 1024 227 233 0.391 2.56 0.476 0.050 2.9	90.2 34.1 34.1 1163 171 198 0.297 3.37 0.297 0.020 2.6	69.9 35.0 28.0 980 219 215 0.432 2.31 0.455 0.050 2.2	53.0 21.7 11.0 240 340 82 0.370 2.70 0.370 0.050 3.4	52.0 22.6 11.1 250 288 72 0.455 2.20 0.455 0.050 3.3	37.0 30.8 29.7 915 237 217 0.500 2.00 0.500 0.050 1.2	37.0 29.5 26.4 780 283 221 0.667 1.50 0.667 0.050 1.3	28.3 44.0 19.4 854 226 193 0.661 1.51 0.709 0.050 1.0	14.0 71.1 35.0 1380 215 297 1.429 0.70 1.429 0.70 1.429 0.050 0.4	102.0 28.0 21.0 588 200 118 0.190 5.26 0.190 0.050 4.2	81.6 28.0 21.0 588 200 118 0.300 3.33 0.300 0.050 3.4	81.6 28.0 21.0 588 200 118 0.300 3.33 0.300 0.050 3.4	61.2 28.0 21.0 588 200 118 0.510 1.96 0.510 0.050 2.5	61.2 28.0 21.0 588 200 118 0.300 3.33 0.300 0.050 2.5	40.8 28.0 21.0 588 200 118 1.110 0.90 1.110 0.050 1.7	40.8 28.0 21.0 588 200 118 0.400 2.50 0.400 0.050 1.7
-CALCULTED ALAN WIND SPEED AT	TOP OF	ROITDIN	s E/S																			••••				
AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDO	37.7 38.9 39.2 37.5	37.1 38.1 38.0 36.9	37.1 38.0 38.0 36.9	36.0 36.4 36.7 35.7	35.5 35.8 36.2 35.3	34.6 34.7 35.3 34.5	34.3 34.3 35.0 34.2	34.1 34.1 34.8 34.1	33.6 33.4 34.2 33.6	33.1 32.7 33.6 33.0	32.7 32.2 33.1 32.6	32.4 31.9 32.8 32.4	30.8 29.9 31.0 30.9	29.3 27.9 28.9 29.3	29.2 27.8 28.8 29.2	27.2 25.5 26.3 27.3	27.2 25.5 26.3 27.3	25.8 23.8 24.4 25.9	22.1 20.0 19.2 22.1	33.2 32.9 33.7 33.1	31.8 31.1 32.1 31.8	31.8 31.1 32.1 31.8	30.0 28.9 30.0 30.1	30.0 28.9 30.0 30.1	27.7 26.1 27.0 27.9	27.7 26.1 27.0 27.9
GUST FLCTOR							<u> </u>			<u> </u>			·			<u>,</u> u				·······						
AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDU Solari European for Steel European for Concrete	2.30 2.29 2.27 2.21 2.36 2.56 2.28	2.27 2.14 2.23 2.12 2.31 2.54 2.27	2.32 2.27 2.28 2.22 2.37 2.54 2.27	2.24 1.97 2.19 2.01 2.25 2.55 2.27	2.22 1.87 2.16 1.95 2.20 2.52 2.25	2.32 1.96 2.23 2.02 2.28 2.51 2.25	2.28 1.87 2.20 1.95 2.23 2.39 2.16	2.37 2.06 2.29 2.12 2.34 2.47 2.21	2.34 1.91 2.23 1.98 2.27 2.42 2.18	2.40 1.97 2.27 2.03 2.32 2.47 2.22	2.37 1.89 2.25 1.96 2.28 2.40 2.16	2.60 2.29 2.47 2.35 2.58 2.53 2.26	2.54 2.07 2.39 2.08 2.44 2.52 2.25	2.74 2.33 2.62 2.31 2.70 2.70 2.38	2.71 2.28 2.58 2.21 2.64 2.60 2.31	2.81 2.33 2.67 2.25 2.73 2.64 2.34	2.79 2.30 2.64 2.18 2.69 2.47 2.22	2.80 2.30 2.66 2.20 2.70 2.47 2.22	2.83 2.35 2.70 2.36 2.73 2.11 1.95	2.52 2.24 2.42 2.21 2.51 2.55 2.27	2.54 2.14 2.41 2.17 2.47 2.60 2.31	2.54 2.14 2.41 2.17 2.47 2.60 2.31	2.61 2.14 2.46 2.12 2.50 2.48 2.22	2.68 2.27 2.54 2.26 2.63 2.73 2.41	2.73 2.24 2.57 2.09 2.60 2.17 2.00	2.81 2.36 2.69 2.30 2.77 2.75 2.42
ALONG WIND PELK BASE MOMENT	KN m			•		··				<u></u>					<u></u>	<u></u>						<u></u>				
AS 1170 (Nov 1988) NBCC Siniu & Scanlan ESDU	1665 1557 1649 1466	1754 1535 1677 1505	1183 1076 1130 1041	1013 804 944 829	1209 908 1117 968	678 512 620 548	597 434 546 472	320 247 294 266	508 364 456 399	457 323 401 356	425 292 372 325	274 207 240 230	150 101 125 112	51 35 42 40	51 34 41 38	32 20 24 23	30 19 22 22	24 15 16 17	7.0 4.2 3.7 5.1	293 226 262 238	173 124 149 137	173 124 149 137	89 60 73 67	91 64 76 72	35 23 27 25	36 24 28 27
ACROSS WIND PELK BASE HOHENT	HN n					<u></u> .	<u> </u>						·		<u>.</u>											
AS 1170 (Nov 1988) NBCC Simiu & Scanlan	2749 1638 2018	1424 1071 1242	1960 1125 1329	712 402 489	417 367 248	358 222 264	253 121 137	316 . 152 191	144 89 150	176 77 115	90 34 67	233 89 108	59 16 19	17 12 16	14 9 11	13.0 2.4 2.7	11.3 1.7 1.9	4.4 0.8 0.8	1.2 0.1 0.0	282 154 237	97 46 68	97 46 68	35 10 14	48 20 30	11.1 1.2 1.5	15.1 4.5 6.3
ALONG WING PEAK DISPLACEMENT	Ľ				i					i						· · · · · · · · · · · · · · · · · · ·								<u></u>	<u> </u>	·
NBCC Simiu & Scanlan ESDU Approximation to NBCC	0.416 0.411 0.382 0.436	0.408 0.416 0.391 0.472	0.393 0.385 0.371 0.510	0.309 0.339 0.315 0.290	0.213 0.245 0.224 0.214	0.159 0.180 0.168 0.162	0.068 0.080 0.073 0.155	0.126 0.141 0.135 0.210	0.104 0.122 0.133 0.170	0.098 0.113 0.101 0.093	0.075 0.089 0.083 0.137	0.116 0.126 0.127 0.117	0.043 0.050 0.048 0.068	0.091 0.101 0.101 0.081	0.068 0.076 0.063 0.090	0.022 0.024 0.025 0.019	0.012 0.013 0.013 0.018	0.015 0.016 0.020 0.015	0.003 0.002 0.003 0.003	0.410 0.444 0.424 0.223	0.141 0.159 0.154 0.146	0.141 0.159 0.154 0.146	0.042 0.048 0.047 0.085	0.129 0.144 0.143 0.085	0.008 0.008 0.008 0.039	0.062 0.067 0.069 0.039
ALUNG WIRD PEAK DEITT EATIO	п/(Реа	k nisb)				.		•					- · · -											F 3 5 4	
NBCC Simiu & Scanlan ESDU Approximation to NBCC	481 487 524 459	451 442 470 389	466 475 493 359	498 454 489 532	674 586 641 670	797 703 754 783	1787 1519 1658 780	939 844 879 566	1054 897 824 645	1024 883 990 1071	1255 1052 1130 687	776 713 710 772	1626 1398 1457 1036	585 526 525 657	761 680 825 577	1674 1539 1480 1990	3204 2942 2846 2075	1860 1771 1415 1853	4945 5899 4667 4122	249 229 241 457	580 514 530 558	580 514 530 558	1453 1273 1302 723	475 425 428 723	5378 4871 5100 1042	663 606 591 1042

•

.

TABLE B3 - Please fold out

•

TABLE B3

•

COMPARISON OF WIND RESPONSE CALCULATION METHODS

Basic Wind Speed: Wgtn Serviceability Limit State: Peak V10,2 = 39.0 m/s Nean V10,2 = 23.4 m/s

	<u> </u>							B	UILDING	REFERENC	E	·		<u> </u>						····					······		<u> </u>
		Simiu Exanp	CAARC Build	NBCC Examp	Å	В	с	D	E	r	G	H	I	J	K	Ĺ	X	N	0	P	Wall 4 λΟ	Wall 3 AD	Prame4 λΟ	Wall 2 λΟ	Prame3 AU	Wall 1 λΟ	Frame2 λΟ
	BUILDING INPUT PARAMETERS		···· - ··			<u> </u>								<u>-</u>									·····				
·	Height, h m Width, b (Equiv) m Depth, d (Equiv) m Area, A (Actual) m^2 Building Density kg/m^3 Mass/Unit Height t/m Natural Preq, Along Hz Period, Along s Natural Preq, Across Hz Critical Damp Ratio Slender Coeff, h/A^0.5	200.0 35.0 35.0 1225 200 245 0.175 5.71 0.175 0.175 0.010 5.7	183.9 45.7 30.5 1394 160 223 0.200 5.00 0.200 0.200 0.010 4.9	183.0 30.5 30.5 930 176 164 0.200 5.00 0.200 0.200 0.010 6.0	154.0 40.4 38.1 1480 164 243 0.190 5.26 0.206 0.206 0.015 4.0	143.6 57.6 37.0 1220 286 349 0.213 4.69 0.290 0.015 4.1	126.6 42.2 35.4 1200 256 307 0.229 4.37 0.251 0.015 3.7	121.0 42.1 35.0 1140 257 293 0.346 2.89 0.376 0.015 3.6	118.7 22.8 22.8 520 287 149 0.273 3.66 0.273 0.015 5.2	109.6 44.2 23.0 1017 224 228 0.320 3.13 0.320 0.015 3.4	100.0 48.0 32.0 1536 237 364 0.278 3.60 0.270 0.015 2.6	93.8 52.8 19.4 1024 227 233 0.391 2.56 0.476 0.015 2.9	90.2 34.1 34.1 1163 171 198 0.297 3.37 0.297 0.010 2.6	69.9 35.0 28.0 980 219 215 0.432 2.31 0.455 0.015 2.2	53.0 21.7 11.0 240 340 82 0.370 2.70 0.370 0.370 0.015 3.4	52.0 22.6 11.1 250 288 72 0.455 2.20 0.455 0.015 3.3	37.0 30.8 29.7 915 237 217 0.500 2.00 0.500 0.500 0.015 1.2	37.0 29.5 26.4 780 283 221 0.667 1.50 0.667 0.015 1.3	28.3 44.0 19.4 854 226 193 0.661 1.51 0.709 0.015 1.0	14.0 71.1 35.0 1380 215 297 1.429 0.70 1.429 0.015 0.4	102.0 28.0 21.0 588 200 118 0.190 5.26 0.190 0.015 4.2	81.6 28.0 21.0 588 200 118 0.300 3.33 0.300 0.015 3.4	81.6 28.0 21.0 588 200 118 0.300 3.33 0.300 0.015 3.4	61.2 28.0 21.0 588 200 118 0.510 1.96 0.510 0.015 2.5	61.2 28.0 21.0 588 200 118 0.300 3.33 0.300 0.015 2.5	40.8 28.0 21.0 588 200 118 1.110 0.90 1.110 0.015 1.7	40.8 28.0 21.0 588 200 118 0.400 2.50 0.400 0.015 1.7
	CALCULATED HEAN WIND SPEED A	T TOP OF	BUILDING	n/s											<u> </u>			<u> </u>	<u></u>				<u> </u>	···			<u> </u>
	AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDU	32.0 33.0 33.2 32.0	31.5 32.3 32.2 31.5	31.4 32.2 32.2 31.5	30.5 30.9 31.1 30.5	30.1 30.3 30.7 30.1	29.3 29.4 29.9 29.4	29.1 29.1 29.6 29.1	29.0 28.9 29.5 29.0	28.5 28.4 29.0 28.6	28.1 27.7 28.5 28.1	27.7 27.3 28.1 27.8	27.5 27.0 27.8 27.6	26.1 25.3 26.2 26.3	24.8 23.6 24.5 24.9	24.7 23.5 24.4 24.8	23.0 21.6 22.3 23.2	23.0 21.6 22.3 23.2	21.9 20.2 20.7 22.0	18.7 17.0 16.3 18.2	28.2 27.9 28.6 28.2	26.9 26.3 27.2 27.1	26.9 26.3 27.2 27.1	25.4 24.5 25.4 25.6	25.4 24.5 25.4 25.6	23.5 22.2 22.9 23.7	23.5 22.2 22.9 23.7
	GUST FACTOR				<u> </u>				<u> </u>			~				<u> </u>				÷=	<u></u>			· <u> </u>			
	AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDU Solari European for Steel European for Concrete	2.42 2.50 2.34 2.46 2.47 2.56 2.28	2.36 2.29 2.29 2.32 2.39 2.54 2.27	2.43 2.47 2.35 2.46 2.47 2.54 2.27	2.41 2.28 2.32 2.34 2.43 2.55 2.27	2.34 2.10 2.25 2.22 2.33 2.52 2.25	2.46 2.21 2.34 2.36 2.44 2.51 2.25	2.35 2.00 2.27 2.25 2.32 2.39 2.16	2.51 2.32 2.41 2.48 2.52 2.47 2.21	2.42 2.06 2.32 2.21 2.38 2.42 2.18	2.51 2.16 2.38 2.32 2.47 2.47 2.22	2.43 2.00 2.31 2.14 2.37 2.40 2.16	2.69 2.42 2.54 2.62 2.68 2.53 2.26	2.61 2.19 2.47 2.33 2.55 2.52 2.25	2.88 2.55 2.81 2.71 2.95 2.70 2.38	2.81 2.44 2.71 2.50 2.82 2.60 2.31	2.89 2.46 2.79 2.56 2.90 2.64 2.34	2.83 2.39 2.73 2.41 2.80 2.47 2.22	2.84 2.37 2.77 2.39 2.81 2.47 2.22	2.84 2.39 2.75 2.41 2.79 2.11 1.95	2.78 2.66 2.66 2.63 2.84 2.55 2.27	2.68 2.38 2.55 2.52 2.67 2.60 2.31	2.68 2.38 2.55 2.52 2.67 2.60 2.31	2.67 2.26 2.54 2.35 2.61 2.48 2.22	2.85 2.52 2.73 2.67 2.89 2.73 2.41	2.74 2.29 2.63 2.18 2.67 2.17 2.00	2.94 2.55 2.85 2.70 3.00 2.75 2.42
	ALONG WIND PEAK ACCELERATION	l milli	-g				<u> </u>	. <u> </u>			 	·						<u> </u>	<u> </u>								
	λS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan ESDU	16.7 21.9 14.9 13.0 19.3	20.3 24.9 15.5 14.9 23.0	20.4 26.0 18.7 15.2 23.9	15.1 17.6 10.8 11.3 17.5	12.1 13.1 6.5 8.8 14.9	10.7 11.5 6.7 8.0 13.5	7.5 7.7 5.8 5.3 10.7	12.0 13.3 9.8 9.3 16.0	11.0 10.9 7.0 8.2 14.8	8.7 8.5 5.0 6.5 11.0	10.0 9.2 5.8 7.4 13.9	14.2 14.0 9.3 10.8 18.3	8.0 7.1 5.3 6.1 11.5	17.1 15.3 7.9 14.9 22.9	16.5 14.2 8.3 13.7 21.5	6.1 4.8 3.2 4.9 8.9	4.4 3.3 2.7 3.4 6.7	5.9 4.2 2.6 4.6 9.4	2.2 1.3 1.0 1.5 3.2	24.8 26.8 13.3 20.9 26.8	17.0 16.5 9.9 13.6 21.6	17.0 16.5 9.9 13.6 21.6	10.3 8.9 6.9 7.9 15.1	17.1 15.8 8.3 14.4 21.5	4.5 3.3 4.1 3.3 7.5	13.2 10.8 5.9 11.0 17.9
	ACROSS WIND PEAK ACCELERATIO)N mill.	i-g																	-,,, · ,							
	AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan	68.2 42.1 20.9 50.8	50.5 35.8 20.4 40.6	87.4 51.6 26.0 59.8	42.0 22.1 13.5 27.0	21.6 9.6 7.0 11.0	25.9 11.9 8.0 17.1	21.9 7.3 6.3 10.2	49.0 23.8 13.1 29.0	19.5 10.7 8.2 17.4	17.7 7.0 5.6 10.1	16.9 5.5 5.7 10.4	39.9 14.0 10.8 16.5	21.8 5.3 5.1 6.1	26.1 17.1 10.3 21.6	25.7 14.5 10.2 17.9	16.5 2.6 3.1 3.0	14.2 1.8 2.5 2.0	11.0 1.7 2.4 1.8	8.3 0.2 0.6 0.2	73.3 41.2 19.2 61.7	43.2 19.3 12.5 27.5	43.2 19.3 12.5 27.5	29.7 7.7 7.4 10.4	38.5 15.2 10.3 21.9	22.1 2.0 3.5 2.5	28.4 7.5 6.5 10.3
	RESULTANT PEAK ACCELERATION	(0.9*SR	SS) nil	li-g		<u> </u>													—— <u>—</u> — <u>—</u> —— <u>—</u>				· <u></u>				
	AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan Empirical	68.2 42.7 20.9 50.8 33.3	50.5 39.2 20.4 40.6 32.9	87.4 52.1 26.0 59.8 44.6	42.0 25.4 13.5 27.0 24.4	22.3 14.6 7.0 12.7 15.5	25.9 14.9 8.0 17.1 14.9	21.9 9.5 6.3 10.4 14.7	49.0 24.6 13.1 29.0 28.2	20.1 13.8 8.2 17.4 16.7	17.7 9.9 5.6 10.8 9.3	17.7 9.7 5.7 11.5 13.4	39.9 17.8 10.8 17.8 14.9	21.8 8.0 5.4 7.7 9.9	28.1 20.7 10.3 23.6 18.4	27.5 18.3 10.2 20.3 20.4	16.5 4.9 3.1 5.1 4.3	14.2 3.4 2.5 3.5 4.2	11.2 4.2 2.4 4.6 3.5	8.3 1.3 0.7 1.5 0.9	73.3 44.2 19.2 61.7 29.6	43.2 22.9 12.5 27.6 22.1	43.2 22.9 12.5 27.6 22.1	29.7 10.6 7.4 11.8 15.3	38.5 19.7 10.3 23.5 15.3	22.1 3.5 3.5 3.7 9.0	28.4 11.9 6.5 13.5 9.0
	ALONG WIND PEAK DISPLACEMENT	ſ E	,								<u></u>						<u>.</u>										
	NBCC Simiu & Scanlan ESDO Approximation to NBCC	0.326 0.305 0.307 0.374	0.315 0.307 0.309 0.411	0.307 0.286 0.296 0.435	0.257 0.258 0.262 0.250	0.171 0.184 0.184 0.189	0.129 0.136 0.132 0.140	0.052 0.059 0.058 0.134	0.102 0.107 0.113 0.176	0.081 0.091 0.091 0.148	0.077 0.085 0.082 0.081	0.057 0.066 0.065 0.120	0.088 0.093 0.101 0.100	0.033 0.037 0.038 0.058	0.071 0.077 0.085 0.068	0.053 0.058 0.050 0.076	0.017 0.018 0.020 0.016	0.009 0.009 0.010 0.015	0.011 0.012 0.015 0.013	0.002 0.002 0.002 0.003	0.349 0.351 0.360 0.190	0.112 0.121 0.127 0.124	0.112 0.121 0.127 0.124	0.032 0.036 0.037 0.072	0.103 0.111 0.120 0.072	0.006 0.006 0.006 0.033	0.048 0.051 0.058 0.033
	ALONG WIND PEAK DRIFT RATIO	b/(Pea	k Disp)										<u> </u>					<u> </u>		<u> </u>			<u>-</u> -				
	NBCC Simiu & Scanlan ESDU Approximation to MBCC	613 655 651 535	584 599 595 447	597 641 618 420	599 596 588 615	. 839 781 780 761	- 984 930 959 904	2324 2048 2086 900	1159 1113 1050 674	1359 1204 1204 742	1297 1173 1220 1227	1656 1420 1443 784	1021 966 893 900	2119 1890 1840 1206	743 685 624 783	989 901 1040 687	2205 2047 1850 2332	4293 3963 3700 2437	2507 2358 1887 2133	6747 8037 7000 4634	292 291 283 538	728 675 643 658	728 675 643 658	1921 1711 1654 852	594 551 510 852	7317 6632 6800 1227	855 793 703 1227

•

.

TABLE B4 - Please fold out

TABLE B4

COMPARISON OF WIND RESPONSE CALCULATION METHODS

•

.

.

.

·

ALONG WIND PEAK DRIFT RATION NBCC Simiu & Scanlan ESDO Approximation to NBCC	ALONG WIND PEAK DISPLACEMEN NBCC Simiu & Scanlan ESDU Approximation to NBCC	RESULTANT PEAK ACCELERATION AS 1170 (Nov 1938) NBCC Loh & Isyumov Simiu & Scanlan Empirical	ACROSS WIND PELK ACCELERATIO -AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan	ALONG WIND PEłk ACCELERATION AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan ESDU	GUST FACTOR AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDU Solari European for Steel European for Concrete	CALCULATED HELN WIND SPEED AN AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDU	BUILDING INPUT PARAMETERS Height, h n Width, b (Equit) Depth, d (Equit) Area, A (Actual) Building Density Mass/Unit Height t/m Natural Freq, Along Hz Period, Along Hz Natural Freq, Across Hz Critical Damp Ratio Slender Coeff, b/A^0.5	Wind Speed: Auck Serviceab
) b/(Pea 803 834 810 793	T ■ 0.249 0.240 0.247 0.252	(0.9*SR 47.8 30.0 17.5 35.2 24.1)H milli 47.8 29.4 15.6 35.2	milli- 12.2 15.8 9.3 15.4	2.35 2.38 2.29 2.29 2.39 2.39 2.39 2.28	r TOP OF E 28.7 29.6 29.8 28.9	200.0 35.0 35.0 1225 200 245 0.175 5.71 0.175 5.71	ility Lini Siniu Examp 1
lk Disp) 761 760 741 672	0.242 0.242 0.248 0.248 0.273	SS) mil. 37.3 27.6 17.4 28.1 23.8	1-g 37.3 25.0 15.2 28.1	g 14.7 17.8 11.9 10.6 18.3	2.30 2.19 2.24 2.24 2.33 2.33 2.54 2.27	JUILDING 28.2 29.0 28.9 28.4	183.9 45.7 30.5 1394 160 223 0.200 5.00 0.200 0.200 4.9	it State: CMARC Build I
780 814 772 619	0.235 0.225 0.237 0.237 0.296	li-g 61.4 36.6 21.8 41.4 32.2	61.4 36.1 19.4 41.4	14.8 14.8 14.4 10.9 18.8	2.37 2.34 2.42 2.42 2.42 2.54 2.27	n/s 28.2 28.9 28.9 28.4	183.0 30.5 30.5 30.5 176 176 5.00 0.200 0.200 0.200 0.200	Peak VJ Nean VJ NBCC Pramp
777 755 730 919	0.198 0.204 0.211 0.168	30.8 17.9 11.7 18.7 17.6	30.8 15.4 10.1 18.7	11.0 12.6 8.3 8.0 13.9	2.36 2.27 2.31 2.31 2.35 2.55	27.4 27.7 27.9 27.5	154.0 40.4 38.1 1480 164 243 0.190 5.26 0.206 0.015 4.0	10,2 = 35 10,2 = 21
1079 985 977 1158	0.133 0.146 0.147 0.124	16.9 10.4 8.8 11.2	16.6 6.7 5.2 7.6	8.7 9.4 5.0 11.7	2.30 2.01 2.22 2.21 2.29 2.29 2.52 2.25	27.0 27.2 27.5 27.1	143.6 57.6 37.0 1220 1220 286 286 349 0.213 4.69 0.213 0.213 4.69 0.213 4.1	B .0 1/S
1269 1175 1217 1353	0.100 0.108 0.104 0.094	19.4 10.5 7.1 11.8 10.8	19.4 8.3 6.0 11.8	7.7 8.2 5.1 5.7 10.6	2.41 2.13 2.30 2.33 2.51 2.25	26.3 26.4 26.8 26.5	42.2 42.2 35.4 1200 256 307 0.229 4.37 0.251 0.251 0.251 0.251	C
2956 2572 2574 1347	0.041 0.047 0.047 0.047	16.8 6.7 5.8 7.2 10.6	16.8 5.0 4.7 7.1	۵۵ ۵۵ ۵۵ ۵۵ ۵۰ ۵۰ ۵۰	2.33 1.95 2.24 2.29 2.29 2.39 2.16	26.1 26.1 26.6 26.3	21.0 42.1 35.0 1140 1140 2.89 2.89 2.89 2.89 3.6 0.015 3.6	D BUII
1493 1408 1318 978	0.079 0.084 0.090 0.121	35.0 17.2 11.1 20.1 20.4	35.0 16.6 9.8 20.1	8.7 9.6 7.5 6.6 12.4	2.47 2.24 2.24 2.44 2.44 2.45 2.47 2.21	26.0 26.0 26.5 26.2	18.7 1 22.8 22.8 520 287 287 149 1.273 0.273 0.273 0.273 5.2 0	DING REI
1733 1515 1501 1114	0.063 0.072 0.073 0.098	15.2 9.7 7.4 12.1 12.1	15.0 7.5 6.1 12.1	7.9 7.7 5.4 5.8 11.4	2.39 2.01 2.29 2.19 2.34 2.34 2.42 2.18	25.6 26.0 25.8	09.6 1 23.0 1017 224 3.13 3.13 3.4	ERENCE
1662 1481 1515 1849	0.060 0.068 0.066 0.054	13.5 7.0 5.1 7.5 6.8	13.5 4.9 4.2 7.0	6.3 6.0 3.8 4.6 8.7	2.47 2.09 2.34 2.29 2.41 2.41 2.41 2.22	25.2 24.9 25.5 25.3	00.0 48.0 32.0 1536 237 3.60 3.60 3.60 0.270 2.6	6
2096 1783 1804 1187	0.045 0.053 0.052 0.079	13.6 6.8 5.6 8.0 9.7	13.3 3.8 4.2 7.2	7.1 6.5 4.5 5.2 10.7	2.41 1.96 2.29 2.11 2.33 2.40 2.16	24.9 24.5 25.2 25.0	93.8 52.8 19.4 1024 227 233 2.36 2.56 2.56 0.015 2.9	
1318 1226 1114 1333	0.068 0.074 0.081 0.068	30.0 12.6 9.7 12.4 10.8	30.0 9.8 8.1 11.4	10.2 10.0 7.2 7.7 14.3	2.64 2.32 2.48 2.58 2.53 2.53 2.26	24.7 24.2 25.0 24.8	90.2 34.1 34.1 1163 171 198 0.297 0.010 2.6	
2689 2331 2255 1789	0.026 0.030 0.031 0.039	16.9 5.6 5.1 5.4 7.2	16.9 3.7 4.0 4.2	5.7 4.1 8.9	2.59 2.15 2.44 2.30 2.51 2.52 2.25	23.4 22.7 23.6 23.6	69.9 35.0 28.0 980 219 215 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	с,
950 871 1134	0.056 0.061 0.067 0.047	20.9 14.6 8.8 16.4 13.3	19.6 11.9 7.7 14.9	12.4 10.9 6.1 10.5 17.8	2.84 2.48 2.74 2.86 2.86 2.70 2.38	22.3 21.2 22.0 22.4	53.0 21.7 21.7 340 2.70 2.70 0.370 2.70 0.370 3.4	
1257 1140 1300 997	0.041 0.046 0.040 0.052	20.7 12.9 8.9 14.1 14.1 14.8	19.7 10.1 7.6 12.4	11.9 10.1 6.4 9.7 16.6	2.77 2.38 2.66 2.46 2.75 2.75 2.31	22.2 21.1 21.9 22.3	52.0 22.6 22.6 250 2.28 2.20 2.20 2.20 2.20 3.3	
2790 2584 2313 3437	0.013 0.014 0.014 0.011	ມ. ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ	12.8 1.8 2.3 2.0	6.5 8 5 8 5 8 5 8 8 5 8 8 8 8 8 8 8 8 8 8	2.86 2.41 2.74 2.53 2.84 2.64 2.34	20.7 19.4 20.0 20.9	37.0 30.8 29.7 217 217 2.00 2.00 1.500 0.500 1.2	
5402 4980 4625 3584	0.007 0.007 0.010	11.1 2.4 2.5 2.5 3.1	11.1 1.3 1.9 1.4	3.1 2.3 2.4 5.2	2.82 2.36 2.36 2.38 2.38 2.76 2.47 2.22	20.7 19.4 20.9	37.0 29.5 26.4 780 283 283 283 283 283 283 283 283 283 283	
3147 3002 2358 3200	0.009 0.009 0.012 0.009	8.7 2.9 2.4 2.5	8.7 1.2 1.8 1.2	4.2 2.9 2.0 3.2 7.2	2.82 2.34 2.71 2.71 2.77 2.77 2.47 2.47 2.22	19.7 18.1 18.5 19.7	28.3 19.4 19.4 226 193 1.51 1.51 1.0 1.0	
8432 10056 7000 7121	0.002 0.001 0.002	6.6 0.9 0.8 0.6	6.6 0.1 0.1	1.5 0.9 1.0 2.3	2.84 2.38 2.73 2.41 2.77 2.11 1.95	16.8 15.2 14.6 16.8	14.0 1 71.1 1380 1380 1380 1380 1380 1380 1380 138	-0 ₩a
380 372 353 789	0.268 0.274 0.289 0.129	51.7 31.2 15.8 42.7 21.4	51.7 28.8 14.3 42.7	18.1 19.4 10.2 15.0 21.2	2.70 2.53 2.57 2.61 2.73 2.55 2.27	25.3 25.0 25.7 25.4	02.0 28.0 21.0 588 200 5.26 5.26 4.2 0	11 4 Ma) AU
935 855 964	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.50 2.60 2.60 2.31	24.2 23.6 24.4 24.4 24.4	81.6 28.0 21.0 21.0 3.33 3.33 3.4 0	AU Pra
935 855 964	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.49 2.60 2.60 2.31	24.2 23.6 24.4 24.4	81.6 28.0 21.0 21.0 3.33 3.33 3.4 0 3.4	ned Wal
2428 2151 2040 1249	0.025 0.028 0.030 0.049	22.9 7.4 6.9 8.2 11.0	22.9 5.4 7.2	7.4 6.3 5.6 11.6	2.65 2.21 2.51 2.51 2.57 2.57 2.48 2.22	22.8 22.0 22.8 23.1	51.2 588 588 588 588 588 588 588 588 588 58	11 2 Fra AO
763 702 638 1249	0.080 0.087 0.096 0.049	28.8 13.9 9.0 16.4 11.0	28.8 10.6 7.7 15.1	12.4 11.3 6.4 10.2 16.9	2.80 2.44 2.66 2.64 2.80 2.73 2.41	22.8 22.0 22.8 23.1	61.2 28.0 21.0 21.0 118 .300 1.300 1.3000 1.300 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.30000 1.30000 1.30000 1.30000000000	nae3 Wal
9158 8299 8160 1800	0.004 0.005 0.023	17.5 2.4 3.7 2.6 6.5	17.5 1.4 2.6 1.7	3.2 2.3 3.2 5.7	2.74 2.27 2.61 2.17 2.64 2.17 2.00	21.1 19.9 20.6 21.3	40.8 28.0 21.0 21.0 21.0 21.0 21.0 21.0 118 0.90 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110	l 1 Fra AU
1089 1006 887 1800	0.037 0.041 0.046 0.023	21.7 8.4 9.5 6.5	21.7 5.2 4.9 7.1	9.5 7.7 4.5 7.8 14.0	2.90 2.48 2.79 2.66 2.92 2.75 2.75 2.42	21.1 19.9 20.6 21.3	10.8 28.0 21.0 2.50 .400 1.7	ne2

ALONG WIND PEAK DRIFT RATIO 1 NBCC cimin 1 comming	ALONG WIND PEAK DISPLACEMENT = NBCC Simiu & Scanlan ESDU Approximation to NBCC 0	RESULTANT PEAK ACCELERATION (O AS 1170 (Nov 1938) NBCC Loh & Isyumov Simiu & Scanlan Empirical	ACROSS WIND PELK ACCELERATION -AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan	ALONG WIND PELK ACCELERATION I AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan ESDU 1	GUST FACTOR AS 1170 (Nov 1988) NBCC Simiu & Scanlan ESDU Solari European for Steel European for Concrete 2	AS 1170 (Nov 1988) NBOC Simiu & Scanlan ESDU	JUILDING INPUT PARAMETERSHeight, hnHeight, h(Equit)Width, b(Equit)Depth, d(Equit)Depth, d(Equit)Area, A(Actual)Area, A(Actual)Building Densitym^2Building Densitym2Building Densitym2Building Densitym2Building Densitym2Building Densitym2Pariod, AlongsPeriod, AlongsSlender Coeff, b/A^0.55	Sin
b/(Peak 803	1.249 1.240 1.247 1.252	.9*SRSS 47.8 30.0 17.5 35.2 24.1	nilli-c 47.8 15.6 35.2	nilli-g 12.2 9.3 15.4	28 6 9 4 9 8 5	8.98.67 9.88.71		
Disp) 761 761	0.242 0.242 0.248 0.248 0.273) milli 37.3 27.6 17.4 28.1 23.8	37.3 25.0 15.2 28.1	14.7 17.8 11.9 10.6 18.3	2.30 2.24 2.24 2.23 2.33 2.254 2.27	28.9 28.9	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.	LIRC H
780 814-	0.235 0.225 0.237 0.237 0.296	-g 61.4 36.6 21.8 41.4 32.2	61.4 36.1 19.4 41.4	14.8 18.7 14.4 10.9 18.8	2.37 2.34 2.30 2.42 2.42 2.54 2.54	28.2 28.9 28.9	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	fean V10 BCC
777 755	0.198 0.204 0.211 0.168	30.8 17.9 11.7 18.7 17.6	30.8 15.4 10.1 18.7	11.0 12.6 8.3 13.9	2.36 2.27 2.31 2.31 2.35 2.55	27.4 27.7 27.9 27.5	4.0 40.4 1480 1480 164 5.26 .015 4.0	,2 = 21. E
1079 985	0.133 0.146 0.147 0.147 0.124	16.9 10.4 8.8 11.2	16.6 6.7 5.2 7.6	8.7 9.4 5.0 6.2 11.7	2.30 2.21 2.22 2.29 2.29 2.52 2.25	27.0 27.2 27.5 27.1	13.6 57.6 286 .213 4.69 .290 4.1 0 4.1	3 0 1 /S
1269 1175-	0.100 0.108 0.104 0.094	19.4 10.5 7.1 11.8 10.8	19.4 8.3 6.0 11.8	7.7 8.2 5.1 5.7 10.6	2.41 2.30 2.33 2.51 2.25	26.3 26.4 26.8 26.5	26.6 1 35.4 1200 4.37 .229 0.015 0.015 0.015	
2956 2572	0.041 0.047 0.047 0.090	16.8 6.7 5.8 7.2 10.6	16.8 5.0 4.7 7.1	ວວ ເບີ 45 ເປີ ເປີ ເບີ 55 45 45	2.33 1.95 2.24 2.24 2.29 2.39 2.39	26.1 26.1 26.6 26.3	21.0 1 42.1 35.0 1140 2.89 2.89 2.89 3.6 0	BUII
1493 1408	0.079 0.084 0.090 0.121	35.0 17.2 11.1 20.1 20.4	35.0 16.6 9.8 20.1	8.7 9.6 7.5 6.6 12.4	2.47 2.24 2.37 2.44 2.44 2.46 2.47 2.21	26.0 26.0 26.5 26.2	18.7 1 22.8 520 287 149 .273 0.273 3.66 3.66 5.2	DING RE
1733	0.063 0.072 0.073 0.098	15.2 9.7 7.4 12.1 12.1	15.0 7.5 6.1 12.1	7.9 7.7 5.4 5.8 11.4	2.39 2.01 2.29 2.19 2.34 2.42 2.18	25.6 25.5 26.0 25.8	09.6 44.2 23.0 1017 224 224 3.13 3.13 3.13 3.13 3.13	FERENCE
1662 1481	0.060 0.068 0.066 0.054	13.5 7.0 5.1 7.5 6.8	13.5 4.9 4.2 7.0	6.3 6.0 3.8 4.6 8.7	2.47 2.34 2.29 2.41 2.41 2.41 2.41	25.2 24.9 25.5 25.3	100.0 48.0 32.0 1536 237 3.60 0.278 0.278 2.6	6 A
2096 1783	0.045 0.053 0.052 0.079	13.6 6.8 5.6 9.7	13.3 3.8 4.2 7.2	7.1 6.5 4.5 5.2	2.41 1.96 2.29 2.11 2.33 2.40 2.16	24.9 24.5 25.2 25.0	93.8 52.8 19.4 1024 227 233 0.391 2.56 0.476 0.015 2.9	
1318 1226	0.068 0.074 0.081 0.068	30.0 12.6 9.7 12.4 10.8	30.0 9.8 8.1 11.4	10.2 10.0 7.2 7.7 14.3	2.64 2.32 2.48 2.58 2.53 2.53	24.7 24.2 25.0 24.8	90.2 34.1 34.1 1163 171 171 0.297 0.297 0.297 2.6	
2689 2331	0.026 0.030 0.031 0.039	16.9 5.6 5.1 5.4 7.2	16.9 3.7 4.0 4.2	5.7 5.0 4.1 8.9	2.59 2.15 2.44 2.51 2.52 2.52	23.4 22.7 23.6 23.6	69.9 35.0 28.0 980 219 219 2.31 0.432 2.31 0.432 2.31 2.31 2.31 2.31	د .
950 871	0.056 0.061 0.047	20.9 14.6 8.8 16.4 13.3	19.6 11.9 7.7 14.9	12.4 10.9 6.1 10.5 17.8	2.84 2.48 2.74 2.68 2.86 2.70 2.38	22.3 21.2 22.0 22.4	53.0 21.7 11.0 240 340 0.370 0.370 0.370 0.370 3.4	~
1257 1140	0.041 0.046 0.040 0.052	20.7 12.9 8.9 14.1 14.1 14.8	19.7 10.1 7.6 12.4	11.9 10.1 6.4 9.7 16.6	2.77 2.38 2.66 2.46 2.75 2.60 2.31	22.2 21.1 21.9 22.3	52.0 22.6 11.1 250 288 72 0.455 0.015 3.3	E-
2790 2584	0.013 0.014 0.016 0.011	12.8 3.5 3.1	12.8 1.8 2.3 2.0	5.8 5.8	2.86 2.41 2.74 2.84 2.84 2.64 2.34	20.7 19.4 20.0 20.9	37.0 30.8 29.7 915 237 217 0.500 0.500 0.500 0.500 1.2	*
5402 4980	0.007 0.007 0.008 0.010	11.1 2.4 2.5 2.5 3.1	11.1 1.3 1.9 1.4	3.1 2.3 2.4 5.2	2.82 2.36 2.38 2.38 2.76 2.47 2.22	20.7 19.4 20.9	37.0 29.5 26.4 780 283 221 0.667 1.50 0.667 1.50 1.50	24
3147	0.009 0.012	8.7 2.9 2.4 3.2 2.5	8.7 1.2 1.8 1.2	4.2 2.9 2.0 3.2 7.2	2.82 2.34 2.71 2.71 2.77 2.47 2.47 2.22	19.7 18.1 18.5 19.7	28.3 44.0 19.4 226 193 0.661 1.51 0.709 0.015 1.0	0
8432	0.001	6.6 0.9 1.0 0.6	6.6 0.1 0.1	1.5 0.9 1.0 2.3	2.84 2.38 2.73 2.41 2.11 1.95	16.8 15.2 14.6 16.8	14.0 71.1 35.0 1380 215 297 1.429 0.70 1.429 0.015 0.4	۰۷ ۲
380	0.268 0.274 0.289 0.129	51.7 31.2 15.8 42.7 21.4	51.7 28.8 14.3 42.7	18.1 19.4 10.2 15.0 21.2	2.70 2.53 2.57 2.61 2.73 2.55 2.27	25.3 25.7 25.4	102.0 28.0 21.0 588 200 118 0.190 0.190 0.015 4.2	all 4 W
853	0.087 0.095 0.102	32.1 16.1 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.49 2.60 2.31	24.2 23.6 24.4 24.4	81.6 28.0 21.0 588 200 118 0.300 0.300 0.300 0.300 3.33 3.4	All 3 F
8935 855	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.50 2.60 2.60 2.31	24.2 23.6 24.4 24.4	81.6 28.0 21.0 588 200 118 0.300 0.300 0.300 0.015 3.4	rame4 k
2428 2151	0.025 0.028 0.030 0.049	22.9 7.4 6.9 8.2 11.0	22.9 5.4 7.2	7.4 6.3 5.6 11.6	2.65 2.21 2.51 2.51 2.51 2.57 2.48 2.22	22.8 22.0 22.8 23.1	61.2 28.0 21.0 588 200 1.96 0.510 0.510 0.510 0.510 2.5	iall 2 F AD
763 638	0.080 0.087 0.096 0.049	28.8 13.9 9.0 16.4 11.0	28.8 10.6 7.7 15.1	12.4 11.3 6.4 16.9	2.80 2.44 2.66 2.64 2.80 2.73 2.41	22.8 22.0 22.8 23.1	61.2 28.0 21.0 588 200 118 0.300 0.300 0.300 0.300 2.5	rame3 v AU
9158 8295 8160	0.004 0.005 0.023	17.5 2.4 3.7 2.6	17.5 1.4 2.6 1.7	3.2 2.3 3.2 5.7	2.74 2.27 2.61 2.17 2.64 2.17 2.17 2.17 2.00	21.1 19.9 20.6 21.3	40.8 28.0 21.0 588 200 1.110 0.90 1.110 0.015 1.7	All 1 H
108	0.03 0.04 0.02	21.7 8.4 9.1	21.7 4.0 7.1	9.5 7.7 4.5 7.8 14.0	2.90 2.48 2.79 2.92 2.92 2.42	21.1 19.9 20.6 21.3	40.8 28.0 21.0 588 200 118 0.400 0.400 0.400 1.7	rame2

NTUC TUDITE DIDINETERS	Simiu C Examp B	LAARC Juild I	Hean V Hean V HBCC	λ	B B		DBUI	LDING RE	FERENCE	6	E4								Wa	11 4 Wa] AU	1 3 Pra AU	ned Hal	11 2 Рта ЛО	ne3 Wa] λ0	AU Fra	AU
ight, h = = dth, b (Equiv) = pth, d (Equiv) = rea, A (Actual) =^2 ilding Density kg/m^3 iss/Unit Height t/m tural Freq, Along Hz priod, Along Hz itural Freq, Across Hz itural Preq, Across Hz itural Damp Batio citical Damp Batio	200.0 35.0 35.0 1225 200 245 0.175 0.175 0.175 0.175	(83.9 45.7 30.5 1394 1394 5.00 5.00 0.200 4.9	183.0 30.5 30.5 930 176 176 5.00 0.200 0.200 6.0	40.4 40.4 38.1 1480 1480 164 243 0.190 5.26 0.206 0.015 4.0	143.6 57.6 37.0 1220 286 349 0.213 4.69 0.213 4.69 0.215 4.1	126.6 42.2 35.4 1200 256 307 0.229 0.251 0.251 0.015 3.7	121.0 1 42.1 35.0 1140 257 2.89 0.376 0.376 0.376 0.015 3.6	18.7 22.8 22.8 520 520 287 287 287 149 0.273 0.273 0.273 0.273 5.2	09.6 44.2 23.0 1017 224 228 1.320 3.13 3.13 3.13 3.13 3.13	.237 3.60 0.278 2.6	93.8 52.8 19.4 1024 227 227 227 227 227 227 227 227 227 2	90.2 34.1 34.1 1163 171 171 171 3.37 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.2	69.9 35.0 28.0 219 219 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31		250 250 250 250 2.250 2.250 2.250 2.250 2.250 2.250 2.20 2.2	37.0 30.8 915 237 217 2.00 2.00 2.00 1.2 1.2	37.0 29.5 26.4 780 283 283 1.50 1.50 1.50 1.50 1.3	28.3 19.4 19.4 226 193 1.51 1.51 1.0 1.0	14.0 10 71.1 10 135.0 10 1380 10 14.0 10 1380 10 14.0 10 135.0 10 14.0 10 135.0 10 14.0 10 135.0 10 14.0 10 14.0 10 135.0 10 14.0 10 1	02.0 28.0 21.0 21.0 21.0 5.26 5.26 0.190 5.26 0.190 4.2 0	31.6 28.0 21.0 21.0 21.0 21.0 21.0 21.0 200 3.33 3.33 3.33 3.33 3.4 0	3.33 3.4 0	61.2 28.0 21.0 588 200 1.96 .510 .510 .510 .015 2.5 0	51.2 28.0 21.0 588 200 118 .300 1.3 .300 1.3 .300 1.3 .300 2.5 0	40.8 28.0 21.0 588 200 118 .110 0.90 .110 0.90 0.90 0.110 0.110 0.90 0.110 0.90 0.110 0.90	40.8 28.0 21.0 21.0 21.0 2.50 2.50 2.50 2.50 2.50 1.7
LCULATED HELN WIND SPEED /	NT TOP OF B	UILDING	s/a																							
S 1170 (Nov 1988) BOC imiu & Scanlan SDU	28.7 29.6 29.8 28.9	28.2 29.0 28.9 28.4	28.2 28.9 28.9 28.4	27.4 27.7 27.9 27.5	27.0 27.2 27.5 27.1	26.3 26.4 26.8 26.5	26.1 26.1 26.6 26.3	26.0 26.0 26.5 26.2	25.6 25.5 25.8	25.2 24.9 25.5 25.3	24.9 24.5 25.2 25.0	24.7 24.2 25.0 24.8	23.4 22.7 23.6 23.6	22.3 21.2 22.0 22.4	22.2 21.1 21.9 22.3	20.7 19.4 20.0 20.9	20.7 19.4 20.9 20.9	19.7 18.1 18.5 19.7	16.8 15.2 14.6 16.8	25.3 25.0 25.7 25.4	24.2 23.6 24.4 24.4 24.4	24.2 23.6 24.4 24.4	22.8 22.0 22.8 23.1	22.8 22.0 22.8 23.1	21.1 19.9 20.6 21.3	21.1 19.9 20.6 21.3
UST FACTOR S 1170 (Nov 1988) BCC imiu & Scanlan SDU SDU olari huropean for Steel huropean for Steel	2.35 2.38 2.29 2.44 2.39 2.56 2.28	2.30 2.29 2.24 2.29 2.33 2.33 2.54 2.27	2.37 2.34 2.30 2.42 2.42 2.42 2.42 2.54 2.54	2.36 2.27 2.31 2.31 2.35 2.55 2.27	2.30 2.21 2.22 2.21 2.29 2.29 2.52 2.25	2.41 2.13 2.30 2.33 2.38 2.51 2.51	2.33 1.95 2.24 2.24 2.29 2.29 2.39 2.39	2.47 2.24 2.37 2.44 2.46 2.46 2.47 2.21	2.39 2.01 2.29 2.19 2.34 2.34 2.42 2.18	2.47 2.34 2.34 2.41 2.41 2.41 2.41	2.41 1.96 2.29 2.11 2.33 2.40 2.16	2.64 2.32 2.48 2.58 2.60 2.53 2.26	2.59 2.15 2.44 2.30 2.51 2.52 2.25	2.84 2.48 2.74 2.68 2.86 2.70 2.70	2.77 2.38 2.66 2.46 2.75 2.75 2.60 2.31	2.86 2.41 2.74 2.53 2.84 2.64 2.64	2.82 2.36 2.36 2.38 2.38 2.76 2.76 2.47 2.22	2.82 2.34 2.71 2.71 2.77 2.47 2.47 2.22	2.84 2.38 2.73 2.41 2.11 2.11	2.70 2.53 2.57 2.61 2.73 2.55 2.55	2.64 2.30 2.49 2.60 2.60 2.31	2.64 2.30 2.49 2.60 2.60 2.31	2.65 2.21 2.51 2.33 2.57 2.48 2.22	2.80 2.44 2.66 2.64 2.80 2.73 2.41	2.74 2.27 2.61 2.61 2.17 2.17 2.17 2.17 2.17	2.90 2.48 2.79 2.92 2.75 2.42
LONG WIND PELK ACCELERATIO	N milli-																									
LS 1170 (Nov 1988) NBOC Loh & Isyumov Simiu & Scanlan ESDU	12.2 15.8 9.3 15.4	14.7 17.8 11.9 10.6 18.3	14.8 18.7 14.4 10.9 18.8	11.0 12.6 8.3 8.0 13.9	8.7 9.4 5.0 6.2 11.7	7.7 8.2 5.1 5.7 10.6	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	8.7 9.6 7.5 6.6 12.4	7.9 7.7 5.4 11.4	6.3 5.0 4.6 8.7	7.1 6.5 4.5 5.2	10.2 10.0 7.2 7.7 14.3	5.7 5.0 4.1 8.9	12.4 10.9 6.1 10.5 17.8	11.9 10.1 6.4 9.7 16.6	6.2 8 8 5 4 4	3.1 2.3 2.4 5.2	4.2 2.9 2.0 3.2 7.2	1.5 0.9 1.0 2.3	18.1 19.4 10.2 15.0 21.2	12.3 11.8 7.6 9.7 16.9	12.3 11.8 7.6 9.7 16.9	7.4 6.3 5.6 11.6	12.4 11.3 6.4 10.2 16.9	3.2 2.3 5.7	9.5 7.7 4.5 14.0
ACROSS WIND PELK ACCELERATI	ION milli	Ð-																	1	1		•	>	>	. 1	2
AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan	47.8 29.4 15.6 35.2	37.3 25.0 15.2 28.1	61.4 36.1 19.4 41.4	30.8 15.4 10.1 18.7	16.6 6.7 5.2 7.6	19.4 8.3 6.0 11.8	16.8 5.0 4.7 7.1	35.0 16.6 9.8 20.1	15.0 7.5 6.1 12.1	13.5 4.9 4.2 7.0	13.3 3.8 4.2 7.2	30.0 9.8 8.1 11.4	16.9 3.7 4.0 4.2	19.6 11.9 7.7 14.9	19.7 10.1 7.6 12.4	12.8 1.8 2.3 2.0	11.1 1.3 1.9 1.4	8.7 1.2 1.8 1.2	6.6 0.1 0.1	51.7 28.8 14.3 42.7	32.1 13.4 9.3 19.0	32.1 13.4 9.3 19.0	22.9 5.4 7.2	28.8 10.6 7.7 15.1	17.5 1.4 2.6 1.7	21.7 5.2 4.9 7.1
RESULTANT PEAK ACCELERATIO	N (0.9*SRS	S) mil	li-g																			•	•		1	2
AS 1170 (Nov 1988) NBCC Loh & Isyumov Simiu & Scanlan Empirical	47.8 30.0 17.5 35.2 24.1	37.3 27.6 17.4 28.1 23.8	61.4 36.6 21.8 41.4 32.2	30.8 17.9 11.7 18.7 17.6	16.9 10.4 6.5 8.8 11.2	19.4 10.5 7.1 11.8 10.8	16.8 6.7 5.8 7.2 10.6	35.0 17.2 11.1 20.1 20.4	15.2 9.7 7.4 12.1 12.1	13.5 7.0 5.1 7.5 6.8	13.6 6.8 5.6 8.0 9.7	30.0 12.6 9.7 12.4 10.8	16.9 5.6 5.1 7.2	20.9 14.6 8.8 16.4 13.3	20.7 12.9 8.9 14.1 14.8	12.8 3.5 3.6	11.1 2.4 2.5 2.5 3.1	8.7 2.9 3.2 2.5	6.6 0.9 0.8 0.6	51.7 31.2 15.8 42.7 21.4	32.1 16.1 10.8 19.2 16.0	32.1 16.1 19.2 16.0	22.9 7.4 8.2 11.0	28.8 13.9 9.0 16.4 11.0	17.5 2.4 3.7 2.6 6.5	21.7 8.4 9.5 6.5
ALONG WIND PEAK DISPLACENE	NT																									n n
NBCC Simiu & Scanlan ESDU Approximation to NBCC	0.249 0.240 0.247 0.252	0.242 0.242 0.248 0.248 0.273	0.235 0.225 0.237 0.296	0.198 0.204 0.211 0.168	0.133 0.146 0.147 0.147 0.124	0.100 0.108 0.104 0.094	0.041 0.047 0.047 0.090	0.079 0.084 0.090 0.121	0.063 0.072 0.073 0.098	0.060 0.068 0.066 0.054	0.045 0.053 0.052 0.079	0.068 0.074 0.081 0.068	0.026 0.030 0.031 0.039	0.056 0.056	0.041 0.046 0.040 0.052	0.013 0.014 0.016 0.011	0.007 0.007 0.010	0.009 0.009 0.012	0.002 0.002 0.002	0.268 0.274 0.289 0.129	0.087 0.102 0.085	0.095 0.102 0.085	0.025 0.028 0.030 0.049	0.087 0.096 0.049	0.005	0.041
ALONG WIND PEAK DRIFT RATI	10 h/(Pea	k Disp)																1						101	0150	1000
NBCC Simiu & Scanlan ESDO Approximation to NBCC	803 834 810 793	761 760 741 672	780 814 772 619	777 755 730 919	1079 985 977 1158	1269 1175 1217 1353	- 2572 2574 1347	1493 1408 1318 978	1733 1515 1501 1114	1662 1481 1515 1849	2096 1783 1804 1187	1318 1226 1114 1333	2689 2331 2255 1789	950 871 791 1134	1257 1140 1300 997	2790 2584 2313 3437	5402 4980 4625 3584	3147 3002 2358 3200	8432 10056 7000 7121	380 372 353 789	935 855 964	935 800 964	2428 2151 2040 1249	763 702 638 1249	8299 8160 1800	1000

LONG WIND PELK DISPLACENENT Image: Constraint of the second		ESULTANT PEAK ACCELERATION (0.9*SRSS) milli-g S 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.9 19.4 16.8 35.0 15.2 13.5 13.6 30.0 16.9 20.7 12.8 11.1 8.7 6.6 BCC 30.0 27.6 36.6 17.9 10.4 10.5 6.7 17.2 9.7 7.0 6.8 12.6 5.6 14.6 12.9 3.5 2.4 2.9 0.9 BCC 30.0 17.5 17.4 21.8 11.7 6.5 7.1 5.8 11.1 7.4 5.1 5.6 9.7 5.1 8.8 8.9 3.0 2.5 2.4 2.9 0.9 BCC 17.5 17.4 21.8 11.7 6.5 7.1 5.8 11.1 7.4 5.1 5.6 9.7 5.1 8.8 8.9 3.0 2.5 2.4 0.8 1.0 8.0 12.4 5.4 16.4 14.1 3.6 2.5 3.2 1.0 1.0 1.0 8.7 10.8 7.2 <td< th=""><th>CROSS WIND PELK ACCELERATION milling S 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.6 19.4 16.8 35.0 13.5 13.3 30.0 16.9 19.6 19.7 12.8 11.1 8.7 6.6 S 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.6 19.4 16.8 35.0 13.5 13.3 30.0 16.9 19.6 19.7 12.8 11.1 8.7 6.6 BCC 29.4 25.0 36.1 15.4 6.7 8.3 5.0 16.6 7.5 4.9 3.8 9.8 3.7 11.9 10.1 1.8 1.3 1.2 0.1 BCC 15.6 15.2 19.4 10.1 5.2 6.0 4.7 9.8 6.1 4.2 4.2 8.1 4.0 7.7 7.6 2.3 1.9 1.8 0.5 BCC 15.6 15.2 19.4 10.1 5.2 6.0 4.7 9.8 6.1 4.2 4.2 14.9 12.4 2.0 1.4 1.2<!--</th--><th>DNG WIND PELK ACCELERATION milli-g 5 1170 (Nov 1988) 12.2 14.7 14.8 11.0 8.7 7.7 5.4 8.7 7.9 6.3 7.1 10.2 5.7 12.4 11.9 4.4 3.1 4.2 1.5 SUC 15.8 17.8 18.7 12.6 9.4 8.2 5.4 9.6 7.7 6.0 6.5 10.0 5.0 10.9 10.1 3.4 2.3 2.9 0.9 SDC 11.5 11.9 14.4 8.3 5.0 5.1 4.5 7.5 5.4 3.8 4.5 7.2 4.1 6.1 6.4 2.4 2.1 2.0 0.8 SDD 11.5 11.9 14.4 8.3 5.0 5.7 3.8 6.6 5.8 4.6 5.2 7.7 4.3 10.5 9.7 3.5 2.4 3.2 1.0 11.4 8.3 18.8 13.9 11.7 10.6 8.3 12.4 11.4 8.7 10.7 14.3 8.9 17.8 16.6 6.8</th><th>ST FACTOR 1170 (Nov 1988) 2.35 2.30 2.37 2.36 2.30 2.41 2.33 2.47 2.41 2.64 2.59 2.84 2.77 2.86 2.82 2.84 CC 2.38 2.19 2.34 2.18 2.01 2.13 1.95 2.24 2.09 1.96 2.32 2.15 2.48 2.38 2.19 2.34 2.18 2.01 2.09 1.96 2.32 2.15 2.48 2.38 2.41 2.36 2.37 2.39 2.41 2.39 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.37 2.29 2.41 2.37 2.39 2.41 2.37 2.39 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.38 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.38 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.37 2.41 2.37 2.4</th><th>COLLATED HELH WIND SPEED AT TOP OF BUILDING m/s 1170 (Nov 1988) 28.7 28.2 27.4 27.0 26.1 26.0 25.6 25.2 24.9 24.7 23.4 22.2 20.7 19.7 16.8 1170 (Nov 1988) 29.6 29.0 28.9 27.7 27.2 26.4 26.1 26.0 25.5 24.9 24.7 23.4 22.2 20.7 19.7 16.8 20 29.6 29.0 28.9 27.7 27.2 26.4 26.1 26.0 25.5 24.9 24.2 22.7 21.1 19.4 18.1 15.2 20 29.8 28.9 27.9 27.5 26.8 26.6 26.5 26.0 25.5 25.2 25.0 23.6 22.0 21.9 20.0 20.0 18.5 14.6 20 29.8 28.9 28.4 27.5 27.1 26.5 26.3 25.5 25.0 23.6 22.4 22.3 20.9 20.9 19.7 16.8 20 28.9 28.4 27.5 27.1 26.5</th><th>LDING IMPUT PALAMETERS 200.0 183.9 183.0 154.0 143.6 126.6 121.0 118.7 109.6 100.0 93.8 90.2 69.9 53.0 52.0 37.0 37.0 28.3 14.0 th, b (Equiv) m 35.0 45.7 30.5 40.4 57.6 42.2 42.1 22.8 44.2 48.0 52.8 34.1 35.0 11.7 22.6 30.8 29.5 44.0 71.1 th, b (Equiv) m 35.0 35.7 30.5 30.1 17.0 35.4 15.0 12.2 12.2 22.4 21.7 22.8 34.1 35.0 21.7 22.6 30.3 29.7 26.4 19.4 35.0 a, A Actual) m² 2125 13.4 35.0 11.0 11.1 29.7 26.4 19.4 35.0 sylmin bensity kg/m²3 200 160 123 0.22 0.23 10.4 22.5 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 <th< th=""><th>Siniu CAARC MBCC Examp Build Examp A B C D E F G E I J K L N H O P</th></th<></th></th></td<>	CROSS WIND PELK ACCELERATION milling S 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.6 19.4 16.8 35.0 13.5 13.3 30.0 16.9 19.6 19.7 12.8 11.1 8.7 6.6 S 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.6 19.4 16.8 35.0 13.5 13.3 30.0 16.9 19.6 19.7 12.8 11.1 8.7 6.6 BCC 29.4 25.0 36.1 15.4 6.7 8.3 5.0 16.6 7.5 4.9 3.8 9.8 3.7 11.9 10.1 1.8 1.3 1.2 0.1 BCC 15.6 15.2 19.4 10.1 5.2 6.0 4.7 9.8 6.1 4.2 4.2 8.1 4.0 7.7 7.6 2.3 1.9 1.8 0.5 BCC 15.6 15.2 19.4 10.1 5.2 6.0 4.7 9.8 6.1 4.2 4.2 14.9 12.4 2.0 1.4 1.2 </th <th>DNG WIND PELK ACCELERATION milli-g 5 1170 (Nov 1988) 12.2 14.7 14.8 11.0 8.7 7.7 5.4 8.7 7.9 6.3 7.1 10.2 5.7 12.4 11.9 4.4 3.1 4.2 1.5 SUC 15.8 17.8 18.7 12.6 9.4 8.2 5.4 9.6 7.7 6.0 6.5 10.0 5.0 10.9 10.1 3.4 2.3 2.9 0.9 SDC 11.5 11.9 14.4 8.3 5.0 5.1 4.5 7.5 5.4 3.8 4.5 7.2 4.1 6.1 6.4 2.4 2.1 2.0 0.8 SDD 11.5 11.9 14.4 8.3 5.0 5.7 3.8 6.6 5.8 4.6 5.2 7.7 4.3 10.5 9.7 3.5 2.4 3.2 1.0 11.4 8.3 18.8 13.9 11.7 10.6 8.3 12.4 11.4 8.7 10.7 14.3 8.9 17.8 16.6 6.8</th> <th>ST FACTOR 1170 (Nov 1988) 2.35 2.30 2.37 2.36 2.30 2.41 2.33 2.47 2.41 2.64 2.59 2.84 2.77 2.86 2.82 2.84 CC 2.38 2.19 2.34 2.18 2.01 2.13 1.95 2.24 2.09 1.96 2.32 2.15 2.48 2.38 2.19 2.34 2.18 2.01 2.09 1.96 2.32 2.15 2.48 2.38 2.41 2.36 2.37 2.39 2.41 2.39 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.37 2.29 2.41 2.37 2.39 2.41 2.37 2.39 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.38 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.38 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.37 2.41 2.37 2.4</th> <th>COLLATED HELH WIND SPEED AT TOP OF BUILDING m/s 1170 (Nov 1988) 28.7 28.2 27.4 27.0 26.1 26.0 25.6 25.2 24.9 24.7 23.4 22.2 20.7 19.7 16.8 1170 (Nov 1988) 29.6 29.0 28.9 27.7 27.2 26.4 26.1 26.0 25.5 24.9 24.7 23.4 22.2 20.7 19.7 16.8 20 29.6 29.0 28.9 27.7 27.2 26.4 26.1 26.0 25.5 24.9 24.2 22.7 21.1 19.4 18.1 15.2 20 29.8 28.9 27.9 27.5 26.8 26.6 26.5 26.0 25.5 25.2 25.0 23.6 22.0 21.9 20.0 20.0 18.5 14.6 20 29.8 28.9 28.4 27.5 27.1 26.5 26.3 25.5 25.0 23.6 22.4 22.3 20.9 20.9 19.7 16.8 20 28.9 28.4 27.5 27.1 26.5</th> <th>LDING IMPUT PALAMETERS 200.0 183.9 183.0 154.0 143.6 126.6 121.0 118.7 109.6 100.0 93.8 90.2 69.9 53.0 52.0 37.0 37.0 28.3 14.0 th, b (Equiv) m 35.0 45.7 30.5 40.4 57.6 42.2 42.1 22.8 44.2 48.0 52.8 34.1 35.0 11.7 22.6 30.8 29.5 44.0 71.1 th, b (Equiv) m 35.0 35.7 30.5 30.1 17.0 35.4 15.0 12.2 12.2 22.4 21.7 22.8 34.1 35.0 21.7 22.6 30.3 29.7 26.4 19.4 35.0 a, A Actual) m² 2125 13.4 35.0 11.0 11.1 29.7 26.4 19.4 35.0 sylmin bensity kg/m²3 200 160 123 0.22 0.23 10.4 22.5 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 <th< th=""><th>Siniu CAARC MBCC Examp Build Examp A B C D E F G E I J K L N H O P</th></th<></th>	DNG WIND PELK ACCELERATION milli-g 5 1170 (Nov 1988) 12.2 14.7 14.8 11.0 8.7 7.7 5.4 8.7 7.9 6.3 7.1 10.2 5.7 12.4 11.9 4.4 3.1 4.2 1.5 SUC 15.8 17.8 18.7 12.6 9.4 8.2 5.4 9.6 7.7 6.0 6.5 10.0 5.0 10.9 10.1 3.4 2.3 2.9 0.9 SDC 11.5 11.9 14.4 8.3 5.0 5.1 4.5 7.5 5.4 3.8 4.5 7.2 4.1 6.1 6.4 2.4 2.1 2.0 0.8 SDD 11.5 11.9 14.4 8.3 5.0 5.7 3.8 6.6 5.8 4.6 5.2 7.7 4.3 10.5 9.7 3.5 2.4 3.2 1.0 11.4 8.3 18.8 13.9 11.7 10.6 8.3 12.4 11.4 8.7 10.7 14.3 8.9 17.8 16.6 6.8	ST FACTOR 1170 (Nov 1988) 2.35 2.30 2.37 2.36 2.30 2.41 2.33 2.47 2.41 2.64 2.59 2.84 2.77 2.86 2.82 2.84 CC 2.38 2.19 2.34 2.18 2.01 2.13 1.95 2.24 2.09 1.96 2.32 2.15 2.48 2.38 2.19 2.34 2.18 2.01 2.09 1.96 2.32 2.15 2.48 2.38 2.41 2.36 2.37 2.39 2.41 2.39 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.37 2.29 2.41 2.37 2.39 2.41 2.37 2.39 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.38 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.38 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.36 2.41 2.37 2.41 2.37 2.4	COLLATED HELH WIND SPEED AT TOP OF BUILDING m/s 1170 (Nov 1988) 28.7 28.2 27.4 27.0 26.1 26.0 25.6 25.2 24.9 24.7 23.4 22.2 20.7 19.7 16.8 1170 (Nov 1988) 29.6 29.0 28.9 27.7 27.2 26.4 26.1 26.0 25.5 24.9 24.7 23.4 22.2 20.7 19.7 16.8 20 29.6 29.0 28.9 27.7 27.2 26.4 26.1 26.0 25.5 24.9 24.2 22.7 21.1 19.4 18.1 15.2 20 29.8 28.9 27.9 27.5 26.8 26.6 26.5 26.0 25.5 25.2 25.0 23.6 22.0 21.9 20.0 20.0 18.5 14.6 20 29.8 28.9 28.4 27.5 27.1 26.5 26.3 25.5 25.0 23.6 22.4 22.3 20.9 20.9 19.7 16.8 20 28.9 28.4 27.5 27.1 26.5	LDING IMPUT PALAMETERS 200.0 183.9 183.0 154.0 143.6 126.6 121.0 118.7 109.6 100.0 93.8 90.2 69.9 53.0 52.0 37.0 37.0 28.3 14.0 th, b (Equiv) m 35.0 45.7 30.5 40.4 57.6 42.2 42.1 22.8 44.2 48.0 52.8 34.1 35.0 11.7 22.6 30.8 29.5 44.0 71.1 th, b (Equiv) m 35.0 35.7 30.5 30.1 17.0 35.4 15.0 12.2 12.2 22.4 21.7 22.8 34.1 35.0 21.7 22.6 30.3 29.7 26.4 19.4 35.0 a, A Actual) m² 2125 13.4 35.0 11.0 11.1 29.7 26.4 19.4 35.0 sylmin bensity kg/m²3 200 160 123 0.22 0.23 10.4 22.5 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 <th< th=""><th>Siniu CAARC MBCC Examp Build Examp A B C D E F G E I J K L N H O P</th></th<>	Siniu CAARC MBCC Examp Build Examp A B C D E F G E I J K L N H O P
0.063 0.072 0.073 0.098		15.2 9.7 7.4 12.1 12.1	15.0 7.5 6.1 12.1	7.9 7.7 5.4 5.8 11.4	2.39 2.01 2.29 2.19 2.34 2.34 2.34 2.18	25.6 25.8	9.6 4.2 224 224 320 320 320 3.1 3.1	RENCE
	0.060 0.068 0.066	13.5 7.0 5.1 7.5 6.8	13.5 4.9 4.2 7.0	6.3 4.6 8.7	2.47 2.09 2.34 2.41 2.41 2.41 2.41	25.2 24.9 25.5 25.3	100.0 48.0 32.0 1536 237 364 0.278 0.278 0.270 0.015 2.6	ດ
	0.045 0.053 0.052 0.079	13.6 6.8 5.6 8.0 9.7	13.3 3.8 4.2 7.2	7.1 6.5 4.5 5.2	2.41 1.96 2.29 2.11 2.33 2.40 2.16	24.9 24.5 25.2 25.0	93.8 52.8 19.4 1024 227 233 2.39 1.391 2.56 2.56 ().476 ().015 2.9	
	0.068 0.074 0.081 0.068	30.0 12.6 9.7 12.4 10.8	30.0 9.8 8.1 11.4	10.2 10.0 7.2 7.7 14.3	2.64 2.32 2.48 2.58 2.53 2.53 2.26	24.7 24.2 25.0 24.8	90.2 34.1 34.1 1163 171 198 0.297 0.297 0.010 2.6	
	0.026 0.030 0.031 0.039	16.9 5.6 5.1 5.4 7.2	16.9 3.7 4.0 4.2	5.7 5.0 4.1 4.3 8.9	2.59 2.15 2.44 2.30 2.51 2.52 2.25	23.4 22.7 23.6 23.6	69.9 35.0 980 219 215 2.31 2.31 2.31 0.432 0.455 0.015 2.2	5-4 7-2
	0.056 0.061 0.067 0.047	20.9 14.6 8.8 16.4 13.3	19.6 11.9 7.7 14.9	12.4 10.9 6.1 10.5 17.8	2.84 2.48 2.74 2.86 2.70 2.38	22.3 21.2 22.0 22.4	53.0 21.7 11.0 340 2.70 2.70 2.70 3.4 0	
	0.041 0.046 0.040 0.052	20.7 12.9 8.9 14.1 14.2	19.7 10.1 7.6 12.4	11.9 10.1 6.4 9.7 16.6	2.77 2.38 2.66 2.46 2.75 2.60 2.31	22.2 21.1 21.9 22.3	52.0 22.6 250 288 288 2.20 2.20 2.20 2.20 3.3 0 3.3	
	0.013 0.014 0.016 0.011	12.8 3.5 3.6	12.8 1.8 2.3 2.0	6.2 8.5 8.5 8.5	2.86 2.41 2.53 2.84 2.64 2.34	20.7 19.4 20.0 20.9	37.0 30.8 29.7 915 237 217 2.00 2.00 0 .500 0 1.2 0	2
	0.007 0.007 0.008 0.010	11.1 2.4 2.5 2.5 3.1	11.1 1.3 1.9 1.4	3.1 2.3 2.4 5.2	2.82 2.36 2.69 2.38 2.76 2.76 2.47 2.22	20.7 19.4 20.0 20.9	37.0 29.5 26.4 780 283 283 283 283 283 283 283 283 283 283	
1147	0.009 0.009 0.012 0.009	8.7 2.9 2.4 3.2 2.5	8.7 1.2 1.8 1.2	4.2 2.9 2.0 3.2 7.2	2.82 2.34 2.71 2.71 2.77 2.47 2.22	19.7 18.1 18.5 19.7	28.3 44.0 19.4 854 226 1.51 1.51 1.0 1.0	
CLV0	0.002 0.001 0.002 0.002	6.6 0.9 0.8 1.0	6.6 0.1 0.1	1.5 0.9 1.0 2.3	2.84 2.38 2.73 2.41 2.77 2.11 1.95	16.8 15.2 14.6 16.8	14.0 1(71.1 1) 1380 1380 215 297 .429 0 .429 0 .429 0 .015 0	Wal
	0.268 0.274 0.289 0.129	51.7 31.2 15.8 42.7 21.4	51.7 28.8 14.3 42.7	18.1 19.4 10.2 15.0 21.2	2.70 2.53 2.57 2.61 2.73 2.73 2.25 2.27	25.3 25.0 25.7 25.4	02.0 28.0 21.0 588 588 588 5.26 .190 0.190	1 4 Wal
	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.50 2.49 2.60 2.60 2.31	24.2 23.6 24.4 24.4 24.4	1.6 1.6 28.0 28.0 28.0 200 200 200 200 200 200 200 2	1 3 Pra AU
	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.50 2.49 2.60 2.60 2.31	24.2 23.6 24.4 24.4	3.33 3.4 0.1 3.4 0.1 3.4 0.1 3.4 0.1 3.4 0.1 1.0 1.0	ne4 Hal
2428	0.025 0.028 0.030 0.049	22.9 7.4 6.9 8.2 11.0	22.9 5.4 5.5 7.2	7.4 6.3 5.6 11.6	2.65 2.21 2.51 2.33 2.57 2.48 2.48 2.22	22.8 22.0 22.8 23.1	510 510 510 510 510 510 510 510 510 510	l 2 Frai AU
763	0.080 0.087 0.096 0.049	28.8 13.9 9.0 16.4 11.0	28.8 10.6 7.7 15.1	12.4 11.3 6.4 10.2 16.9	2.80 2.44 2.66 2.64 2.80 2.73 2.73	22.8 22.0 23.1	1.2 1.2 1.0 200 200 118 200 118 200 118 200 118 200 118 200 118 200 118 2015 0.15 0.15 0.15 0.16	ne3 Wall AU
9158	0.004 0.005 0.023	17.5 2.4 3.7 2.6 6.5	17.5 1.4 2.6 1.7	3.2 3.2 2.3 5.7	2.74 2.27 2.61 2.17 2.64 2.17 2.17 2.00	21.1 19.9 20.6 21.3	0.8 8.0 200 11.0 200 118 110 110 110 110 0. 110 0. 2 0. 2 0. 2 0	l 1 Frai AU
1085	0.037	21.7 8.4 9.5 6.5	21.7 5.2 4.9 7.1	9.5 7.7 4.5 7.8 14.0	2.90 2.48 2.79 2.66 2.92 2.75 2.75 2.42	21.1 19.9 20.6 21.3	400 1.7 1.7	ne2 AU

pproximation to NBCC 0.252 0.273 0.296 0.168 0.124 0.094 0.09	LONG WIND PEAK DISPLACEMENT I BCC 0.249 0.242 0.235 0.198 0.133 0.100 0.04 imiu & Scanlan 0.240 0.242 0.225 0.204 0.146 0.108 0.04	ESULTANT PEAK ACCELERATION (0.9*SRSS) milli-q S 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.9 19.4 16. BCC 30.0 27.6 36.6 17.9 10.4 10.5 6. imiu & Scanlan 35.2 28.1 41.4 18.7 8.8 11.8 7. imiu & Scanlan 35.2 28.1 41.4 18.7 8.8 11.8 7. pirical 24.1 23.8 32.2 17.6 11.2 10.8 10.4	ROSS WIND PELK ACCELERATION milling 3 1170 (Nov 1988) 47.8 37.3 61.4 30.8 16.6 19.4 16.7 SCC 29.4 25.0 36.1 15.4 6.7 8.3 5.0 SCC 15.6 15.2 19.4 10.1 5.2 6.0 4.7 Imiu & Scanlan 35.2 28.1 41.4 18.7 7.6 11.8 7.1	ONG WIND PELK ACCELERATION milling 1170 (Nov 1988) 12.2 14.7 14.8 11.0 8.7 7.7 5.4 CC 15.8 17.8 18.7 12.6 9.4 8.2 5.4 DC 11.5 11.9 14.4 8.3 5.0 5.1 4.5 miu & Scanlan 9.3 10.6 10.9 8.0 6.2 5.7 3.8 D0 15.4 18.3 18.8 13.9 11.7 10.6 8.3	ST FACTOR 1170 (Nov 1988) 2.35 2.30 2.37 2.36 2.30 2.41 2.33 20 2.38 2.19 2.34 2.18 2.01 2.13 1.95 30 2.29 2.24 2.30 2.27 2.22 2.30 2.24 2.30 30 2.44 2.29 2.42 2.31 2.21 2.33 2.41 2.39 1ari 2.44 2.29 2.42 2.31 2.29 2.42 2.31 2.21 2.33 2.14 1ari 2.44 2.29 2.42 2.31 2.29 2.34 2.33 2.14 2.33 2.14 2.33 2.14 1ari 2.56 2.54 2.55 2.52 2.51 2.39 2.34 2.39 2.34 2.39 2.34 2.39 2.35 2.52 2.51 2.39 2.34 2.55 2.52 2.51 2.39 2.34 2.39 2.34 2.39 2.35 2.52 2.51 2.39 2.35 2.25 2.25 2.25 2.25	CULATED NEAN WIND SPEED AT TOP OF BUILDING m/s 1170 (Nov 1988) 28.7 28.2 28.2 27.4 27.0 26.3 26.1 CC 29.6 29.0 28.9 27.7 27.2 26.4 26.1 CC 29.8 28.9 28.9 27.7 27.2 26.4 26.1 CC 29.8 28.9 28.9 27.7 27.5 26.4 26.1 CC 29.8 28.9 28.9 27.7 27.5 26.4 26.1 CC 29.8 28.9 28.9 27.9 27.5 26.4 26.1 CC 29.8 28.9 28.4 28.4 27.5 27.1 26.5 26.3 CC 28.9 28.4 28.4 27.5 27.1 26.5 26.3	DING INPUT PARAMETERS pht, h n h, b (Equir) n 200.0 183.9 183.0 154.0 14, b (Equir) n 35.0 45.7 35.0 35.7 35.0 35.7 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 35.0 30.5 360 1480 1220 1200 1140 143.6 35.0 160 35.0 160 360 175 370 1480 381 370 393 1480 393 1200 393 1430 393	Mean V10,2 = 21.0 m/s Siniu CAARC MBCC Examp Build Examp A B C D
1493	0.079 0.084 0.090 0.121	35.0 17.2 11.1 20.1 20.4	35.0 16.6 9.8 20.1	8.7 9.6 7.5 6.6 12.4	2.47 2.24 2.37 2.44 2.46 2.47 2.21	26.0 26.0 26.5 26.2	118.7 22.8 22.8 520 287 149 0.273 3.66 0.273 0.015 5.2	ILDING R
1733	0.063 0.072 0.073 0.098	15.2 9.7 7.4 12.1 12.1	15.0 7.5 6.1 12.1	7.9 7.7 5.4 5.8 11.4	2.39 2.01 2.29 2.19 2.34 2.34 2.42 2.18	25.6 25.5 26.0 25.8	109.6 44.2 23.0 1017 224 228 0.320 3.13 0.320 0.320 3.13 3.4	EFERENCE F
1662 1481	0.060 0.068 0.066 0.054	13.5 7.0 5.1 7.5 6.8	13.5 4.9 4.2 7.0	6.3 6.0 3.8 4.6 8.7	2.47 2.09 2.34 2.29 2.41 2.41 2.41 2.47	25.2 24.9 25.5 25.3	100.0 48.0 32.0 1536 237 364 0.278 3.60 0.270 0.270 2.6	ດ
2096 1783	0.045 0.053 0.052 0.079	13.6 6.8 5.6 8.0 9.7	13.3 3.8 4.2 7.2	7.1 6.5 4.5 5.2	2.41 1.96 2.29 2.11 2.33 2.40 2.16	24.9 24.5 25.2 25.0	93.8 52.8 19.4 1024 227 233 0.391 2.56 0.476 0.015 2.9	21
1318 1226	0.068 0.074 0.081 0.068	30.0 12.6 9.7 12.4 10.8	30.0 9.8 8.1 11.4	10.2 10.0 7.2 7.7 14.3	2.64 2.32 2.48 2.58 2.58 2.53 2.26	24.7 24.2 25.0 24.8	90.2 34.1 34.1 1163 171 198 0.297 0.297 0.297 0.297 0.297 2.6	H
2689 2331	0.026 0.030 0.031 0.039	16.9 5.6 5.1 5.4 7.2	16.9 3.7 4.0 4.2	5.7 5.0 4.1 8.9	2.59 2.15 2.44 2.30 2.51 2.51 2.52 2.25	23.4 22.7 23.6 23.6	69.9 35.0 28.0 980 219 215 0.432 0.432 0.435 0.015 2.2	در
950 871	0.056 0.061 0.067 0.047	20.9 14.6 8.8 16.4 13.3	19.6 11.9 7.7 14.9	12.4 10.9 6.1 10.5 17.8	2.84 2.48 2.74 2.68 2.86 2.70 2.38	22.3 21.2 22.0 22.4	53.0 21.7 11.0 340).370 2.70 0.1370 3.4 0 3.4	
1257 1140	0.041 0.046 0.040 0.052	20.7 12.9 8.9 14.1 14.1 14.8	19.7 10.1 7.6 12.4	11.9 10.1 6.4 9.7 16.6	2.77 2.38 2.66 2.46 2.75 2.60 2.31	22.2 21.1 21.9 22.3	52.0 22.6 11.1 250 2.20 2.20 2.20 2.20 3.3 0	
2790 2584 วา1า	0.013 0.014 0.016 0.011	12.8 3.5 3.6 3.1	12.8 1.8 2.3 2.0	5.8 6.8	2.86 2.41 2.53 2.84 2.64 2.34	20.7 19.4 20.0 20.9	37.0 30.8 29.7 915 237 217 217 2.00 2.00 0.500 0.500 0.1.5 0 1.2	
5402 4980	0.007 0.007 0.008 0.010	11.1 2.4 2.5 2.5 3.1	11.1 1.3 1.9 1.4	3.1 2.3 2.4 5.2	2.82 2.36 2.36 2.38 2.76 2.47 2.22	20.7 19.4 20.0 20.9	37.0 29.5 26.4 780 283 283 283 283 1.667 0 1.667 0 1.50 1.3 0	
3147 3002	0.009 0.009 0.012 0.009	8.7 2.9 2.4 3.2 2.5	8.7 1.2 1.8 1.2	4.2 2.9 2.0 3.2 7.2	2.82 2.34 2.71 2.37 2.77 2.47 2.47 2.22	19.7 18.1 18.5 19.7	28.3 44.0 19.4 854 226 193 1.51 1.51 1.0 1.0 1.0	
8432 10056	0.002 0.001 0.002	6.6 0.9 0.8 0.6	6.6 0.1 0.1	1.5 0.9 1.0 2.3	2.84 2.38 2.73 2.41 2.11 2.11 1.95	16.8 15.2 14.6 16.8	14.0 1 71.1 1380 1380 215 215 215 215 .429 0.70 0.70 0.70 0.429 0.429 0.429 0.429	Wa
380 372 353	0.268 0.274 0.289 0.129	51.7 31.2 15.8 42.7 21.4	51.7 28.8 14.3 42.7	18.1 19.4 10.2 15.0 21.2	2.70 2.53 2.57 2.61 2.73 2.25 2.27	25.3 25.0 25.7 25.4	02.0 28.0 21.0 588 200 118 .190 0.19	1 4 Wal
935 855	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.49 2.60 2.60 2.31	24.2 23.6 24.4 24.4 24.4	588 588 588 588 588 588 588 588 588 588	1 3 Pra AU
935 855	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.49 2.60 2.60 2.31	24.2 23.6 24.4 24.4	3.33 3.4 0.1 3.33 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ne4 Wal AU
2428 2151 2040	0.025 0.028 0.030 0.049	22.9 7.4 6.9 8.2 11.0	22.9 5.4 5.5 7.2	7.4 6.3 5.6 11.6	2.65 2.21 2.51 2.51 2.51 2.57 2.57 2.48 2.48	22.8 22.0 22.8 23.1	511.0 510.0 511.0 510.0	l 2 Frai AU
763 702 638	0.080 0.087 0.096 0.049	28.8 13.9 9.0 16.4 11.0	28.8 10.6 7.7 15.1	12.4 11.3 6.4 10.2 16.9	2.80 2.44 2.66 2.64 2.73 2.73 2.41	22.8 22.0 22.8 23.1	2.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	me3 Wal
9158 8299 8160	0.004 0.005 0.023	17.5 2.4 3.7 2.6 6.5	17.5 1.4 2.6 1.7	3.2 2.3 3.2 5.7	2.74 2.27 2.61 2.17 2.17 2.17 2.17 2.17 2.00	21.1 19.9 20.6 21.3	10.8 28.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	l 1 Fra AU
108: 1000 861	0.037 0.041 0.046 0.023	21.7 8.4 9.5 6.5	21.7 5.2 4.9 7.1	9.5 7.7 4.5 7.8 14.0	2.90 2.48 2.79 2.66 2.92 2.75 2.42	21.1 19.9 20.6 21.3	40.8 28.0 21.0 21.0 21.0 2.50 2.50 2.50 1.7 1.7	AU

			J	
170 (Nov 1988)	47.8	37.3	61.4	30.8
		1	2	1

.

•

· .

•

.

.

LONG WIND PEAK DRIFT RATIO h/(Peak Disp)	LLONG WIND PEAK DISPLACEMENT B HBCC 0.249 0.242 0.235 Simiu & Scanlan 0.240 0.242 0.235 SDU 0.247 0.248 0.237 Approximation to MBCC 0.252 0.273 0.296	ESULTANT PEAK ACCELERATION (0.9*SRSS) milli-g S 1170 (Nov 1938) 47.8 37.3 61.4 BCC 30.0 27.6 36.6 oh & Isyumov 17.5 17.4 21.8 imiu & Scanlan 35.2 28.1 41.4 impirical 24.1 23.8 32.2	CROSS WIND PELK ACCELERATION milli-g S 1170 (Nov 1988) 47.8 37.3 61.4 BCC 29.4 25.0 36.1 bCC 15.6 15.2 19.4 imiu & Scanlan 35.2 28.1 41.4	ONG WIND PELK ACCELERATION milling 5 1170 (Nov 1988) 12.2 14.7 14.8 SCC 15.8 17.8 18.7 SCC 11.5 11.9 14.4 Sh & Isyumov 9.3 10.6 10.9 SDU 15.4 18.3 18.8	ST FACTOR 1170 (Nov 1988) CC niu & Scanlan 1170 (Nov 1988) 2.35 2.38 2.38 2.39 2.29 2.44 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.30 2.31 2.44 2.39 2.31 2.42 2.33 2.44 2.39 2.31 2.42 2.33 2.44 2.39 2.33 2.44 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.57 2.27	LCULATED HELH WIND SPEED AT TOP OF BUILDING m/s 1170 (Nov 1988) 28.7 28.2 28.2 CC 29.6 29.0 28.9 miu & Scanlan 29.8 28.9 28.9 DU 28.9 28.4 28.4	LDING INPUT PARAMETERS ght, h = 200.0 183.9 183.0 1 th, b (Equir) = 35.0 45.7 30.5 th, d (Equir) = 35.0 45.7 30.5 hding Density kg/m^3 200 160 176 lding Density kg/m^3 200 160 176 ural Freq, ilong Hz 0.175 0.200 0.200 0 tural Freq, icross Hz 0.175 0.200 0.200 0 tural Freq, icross Hz 0.175 0.200 0.200 0 hding Damp Batio 0.010 0.010 0.010 0 hder Coeff, h/A^0.5 5.7 4.9 6.0	Mean Vid Simiu CAARC HBCC Examp Build Examp
755 777	0.198 (0.204 (0.211 (0.168 (30.8 17.9 11.7 18.7 17.6	30.8 15.4 10.1 18.7	11.0 12.6 8.3 8.0 13.9	2.36 2 2.18 2 2.31 2 2.31 2 2.35 2 2.55 2 2.27 2	27.4 2 27.7 2 27.9 2 27.5 2	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	,2 = 21.0 B
1079 985 977).133).146).147).147).124	16.9 10.4 6.5 8.8 11.2	16.6 6.7 5.2 7.6	8.7 9.4 5.0 1.7	.52 22 22 23 25 29 20 20 25 20 20 20	7.0 7.2 7.1 2 7.1 2	·150 0.113 0.126	۳/s
1269 1175- 1217	0.100 0.108 0.104 0.094	19.4 10.5 7.1 11.8 10.8	19.4 8.3 6.0 11.8	7.7 8.2 5.1 5.7 10.6	2.33	5 5 5 5 5 8 4 W		Ð
2956 2572 2574	0.041 0.047 0.047 0.047	16.8 6.7 5.8 7.2 10.6	16.8 5.0 4.7 7.1	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	2.33 1.95 2.24 2.29 2.39 2.16	6.1 16.1	140 2.1 257 257 257 257 257 257 257 257 257 257	BUILE
1493 1408 1318	0.079 0.084 0.090 0.121	35.0 17.2 11.1 20.1 20.4	35.0 16.6 9.8 20.1	8.7 9.6 7.5 6.6 12.4	2.47 2.24 2.44 2.44 2.45 2.47 2.21	6.0 6.2	8.7 10 2.8 4 2.8 2 2.8 2 2.8 10 287 1 287 1 287 1 149 1 273 0. 273 0. 273 0. 5.2 0.)ING REF
1733 1515 1501	0.063 0.072 0.073 0.098	15.2 9.7 7.4 12.1 12.1	15.0 7.5 6.1 12.1	7.9 7.7 5.4 5.8 11.4	2.39 2.01 2.29 2.19 2.34 2.34 2.42 2.18	25.6 26.0 25.8	9.6 10 4.2 3.0 320 320 3.4 0 3.4	ERENCE
1662 1481 1515	0.060 0.068 0.066 0.054	13.5 7.0 5.1 7.5 6.8	13.5 4.9 4.2 7.0	6.3 5.0 4.6 8.7	2.47 2.29 2.34 2.41 2.41 2.41 2.41	25.2 24.9 25.5 25.3	00.0 1536 1536 .278 .278 .278 .278 .278 .278 .278 .270 .270 .270 .270 .270 .270 .270 .270	
2096 1783 1804	0.045 0.053 0.052 0.079	13.6 6.8 5.6 8.0 9.7	13.3 3.8 4.2 7.2	7.1 6.5 4.5 5.2	2.41 1.96 2.29 2.11 2.33 2.40 2.16	24.9 24.5 25.2 25.0	93.8 52.8 19.4 1024 227 227 227 223 233 2.56 0.476 0.015 2.9	
1318 1226 1114	0.068 0.074 0.081 0.068	30.0 12.6 9.7 12.4 10.8	30.0 9.8 8.1 11.4	10.2 10.0 7.2 7.7 14.3	2.64 2.32 2.48 2.58 2.60 2.53 2.26	24.7 24.2 25.0 24.8	90.2 34.1 34.1 1163 171 198).297 ().297	
2689 2331 2255	0.026 0.030 0.031 0.039	16.9 5.6 5.1 5.4 7.2	16.9 3.7 4.0 4.2	5.7 5.0 4.1 8.9	2.59 2.15 2.44 2.51 2.52 2.52	23.4 22.7 23.6 23.6	69.9 35.0 28.0 980 219 215 2.31 2.31 2.31 2.31 0.455 0.015 2.2	
950 871 791	0.056 0.061 0.067 0.047	20.9 14.6 8.8 16.4 13.3	19.6 11.9 7.7 14.9	12.4 10.9 6.1 10.5 17.8	2.84 2.48 2.74 2.86 2.70 2.38	22.3 21.2 22.0 22.4	53.0 21.7 11.0 240 340 3.40 2.70 2.70 0.370 0.370 3.4 0	
1257 1140 1300	0.041 0.046 0.040 0.052	20.7 12.9 8.9 14.1 14.1 14.8	19.7 10.1 7.6 12.4	11.9 10.1 6.4 9.7 16.6	2.77 2.38 2.46 2.75 2.50 2.31	22.2 21.1 21.9 22.3	52.0 22.6 11.1 250 2.88 72 2.20 1.455 2.20 1.455 2.20 3.3	
2790 2584 2313	0.013 0.014 0.016 0.011	12.8 3.5 3.1	12.8 1.8 2.3 2.0	6.8 6.8	2.86 2.41 2.53 2.84 2.64 2.34	20.7 19.4 20.0 20.9	37.0 30.8 29.7 915 237 217 0.500 0.500 0.015 1.2	×
5402 4980 4625 3584	0.007 0.007 0.008 0.010	11.1 2.4 2.5 2.5 3.1	11.1 1.3 1.9 1.4	3.1 2.3 2.4 5.2	2.82 2.36 2.36 2.38 2.38 2.76 2.76 2.47 2.22	20.7 19.4 20.0 20.9	37.0 29.5 26.4 780 283 283 221 0.667 1.50 0.667 1.50 1.50 1.50	N
3147 3002 2358 3200	0.009 0.012 0.012	8.7 2.9 2.4 2.5	8.7 1.2 1.8 1.2	4.2 2.9 2.0 3.2 7.2	2.82 2.34 2.71 2.71 2.77 2.47 2.47 2.22	19.7 18.1 18.5 19.7	28.3 44.0 19.4 854 226 193 0.661 1.51 0.709 0.015 1.0	0
8432 10056 7000 7121	0.002 0.001 0.002	6.6 0.9 0.8 1.0 0.6	6.6 0.1 0.1	1.5 0.9 0.8 1.0 2.3	2.84 2.38 2.73 2.41 2.77 2.11 1.95	16.8 15.2 14.6 16.8	14.0 71.1 35.0 1380 215 297 1.429 0.70 1.429 0.015 0.4	P S
380 372 353 789	0.268 0.274 0.289 0.129	51.7 31.2 15.8 42.7 21.4	51.7 28.8 14.3 42.7	18.1 19.4 10.2 15.0 21.2	2.70 2.53 2.57 2.57 2.57 2.55 2.55 2.27	25.3 25.0 25.7 25.4	102.0 28.0 21.0 588 200 118 0.190 5.26 0.190 0.015 4.2	all 4 W.
935 855 964	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.50 2.60 2.60 2.31	24.2 23.6 24.4 24.4 24.4	81.6 28.0 21.0 588 200 118 0.300 0.300 0.300 0.300 0.315 3.4	all 3 Pi AU
935 855 964	0.087 0.095 0.102 0.085	32.1 16.1 10.8 19.2 16.0	32.1 13.4 9.3 19.0	12.3 11.8 7.6 9.7 16.9	2.64 2.30 2.49 2.60 2.60 2.31	24.2 23.6 24.4 24.4	81.6 28.0 21.0 588 200 118 0.300 3.33 0.300 0.300 3.33 3.33	rame4 W
2428 2151 2040 1249	0.025 0.028 0.030 0.049	22.9 7.4 6.9 8.2 11.0	22.9 5.4 7.2	7.4 6.3 5.6 11.6	2.65 2.21 2.51 2.51 2.57 2.57 2.48 2.22	22.8 22.0 22.8 23.1	61.2 28.0 21.0 588 200 1.96 0.510 0.510 0.510 0.015 2.5	±11 2 Pi A0
763 702 638 1249	0.080 0.087 0.096 0.049	28.8 13.9 9.0 16.4 11.0	28.8 10.6 7.7 15.1	12.4 11.3 6.4 10.2 16.9	2.80 2.44 2.64 2.64 2.80 2.73 2.73	22.8 22.0 22.8 23.1	61.2 28.0 21.0 588 200 118 0.300 3.33 0.300 0.300 2.5	ramej W. AU
9158 8299 8160 1800	0.004 0.005 0.023	17.5 2.4 3.7 2.6	17.5 1.4 2.6 1.7	3.2 2.3 2.3 5.7	2.74 2.27 2.61 2.17 2.64 2.17 2.17 2.17 2.00	21.1 19.9 20.6 21.3	40.8 28.0 21.0 588 200 1.110 0.90 1.110 0.015 1.7	all 1 F
108 100 180	0.03 0.041 0.044	21.7 8.4 9.5 6.5	21.7 5.2 4.9 7.1	9.5 7.7 4.5 7.8 14.0	2.90 2.48 2.79 2.66 2.92 2.75 2.75 2.42	21.1 19.9 20.6 21.3	40.8 28.0 21.0 588 200 118 0.400 2.50 0.400 0.400 1.7	rame2 AU

DXC DXC	•
NIN	
PEAK	
DRIFT	
RATIO	
h/(Peak	
Disp)	

APPENDIX C: WORKED EXAMPLES USING AUSTRALIAN STANDARD AS 1170.2 - 1989

.

.

.

.

.

•

.

WORKED EXAMPLES USING AS 1170

•

Wind Speeds: Auckland Serviceability & Ultimate Limit State Speeds

	· · · · · · · · · · · · · · · · · · ·		CAARC Build	CAARC Build	Build B	Build B
1 2	BUILDING INPUT PARAMETER	RS				
3	Height, h	m	183.9	183.9	143.6	143.6
4	Width, b (Equiv)	m	45.7	45.7	57.6	57.6
5	Depth, d (Equiv)	m	30.5	30.5	37.0	37.0
6	Area, (Actual)	m^2	1394	1394	1220	1220
7	Building Density	$k\alpha/m^3$	160	160	286	286
8	Mass/Unit Height	t/m	223	223	349	349
9	Natural Freg. Along	Hz	0,200	0,200	0.218	0.218
10	Natural Freq. Across	Hz	0.200	0.200	0.290	0.290
11	Natural Freq. Torsion	Hz	0.200	01200	0.437	0.437
12	Critical Damp Ratio		0.010	0.020	0.015	0.050
13	Mode Shape Exp. k		1.0	1.0	1.0	1.0
14		==========	=======		=======	=========
15	WIND & TERRAIN INPUT PAR	AMETERS				
17	Morrain for Site		2	2	2	2
10	Pof Moan Wind V10 2	-	21 00	37 60	21 00	3
10	Topographic Mult Mt	m/ 5	21.00	27.00	21.00	27.60
20			1.0	1.0	1.0	1.0
20	CALCULATED DVNAMIC EACTO	DC	اس جي نس ندر جب حد جب _م ب _م ب	یہے ہیں جس نیب نیب زجے جس نس سے ۔		يتبت ويرو ويدو ببنند وسو منعا مرده سره
22	CALCULATED DINAMIC FACIO					
23	Eff Ht, he = $0.667h$	m	122.7	122.7	95.8	95.8
24	Mean Speed at h	m/s	28.2	37.1	27.0	35.5
25	Turb Int at h		0.143	0.143	0.152	0.152
26	Turb Int, at he		0.159	0.159	0.168	0.168
27	Roughness Factor, r		0.285	0.285	0.304	0.304
28	Turb Length, Lh	m	.2071	2071	1947	1947
29	Background Factor, B		0.640	0.640	0.666	0.666
30	Second Order Turb, w		0.211	0.211	0.230	0.230
31	Along Peak Factor, gf		3.63	3.63	3.65	3.65
32	Across Peak Factor, gf		3.63	3.63	3.73	3.73
33	Size Factor, S		0.0784	0.1128	0.0692	0.1014
34	Reduced Frequency, N		14.66	11.16	15.70	11.95
35	Energy Spectrum, E		0.0779	0.0929	0.0745	0.0889
36					=========	=======
37	GUST FACTORS					
38						
39	Gust Factor		2.30	2.27	2.30	2.22
40	****	========		~~~~~~		
41	ALONG WIND BASE MOMENT					
42						
43	Total Pres Coeff, Cd		1.30	1.30	1.30	1.30
44	Mean Total Force	MN	4.49	7.75	4.03	6.97
45	Mean Base Moment	MN m	448	773	315	544
46	Peak Base Moment	MN m	1031	1754	726	1210
47		============				

48	ALONG WIND RESPONSE					
49 50	Peak Accn	m/s^2	0.144	0.230	0.086	0.107
51	Peak Accn	mil-g	14.7	23.5	8.7	10.9
52		==========		=======================================	32222222	=========
55	ACROSS WIND SPECTRA					
55	V(h)/nb		3.09	4.06	1.62	2.13
56	b/d		1.50	1.50	1.56	1.56
57 58	N/a Across Wind Ofe 6.1.1		6.03	6.03	3.88	3.88
59	Across Wind, Cfs 6:2:1		0.00075	0.00113	0.00122	0.00052
60	Across Wind, Cfs Interp.		0.00149	0.00241	0.00077	0.00099
61	Mean Pressure at h	kPa	0.479	0.827	0.438	0.757
62	ACROSS WIND BASE MOMENT		:======================================			= == == == == == == == == ==
64	Nerross wind DASE HOMENT					
65	Peak Base Moment	MN m	920	1426	391	417
66 67	ACROSS WIND RESPOnse	======	=======================================	=======================================	=============	
68	Mencede wind MEDI ONSE					
69	Peak Accn	m/s^2	0.366	0.567	0.163	0.174
70	Peak Accn	mil-g	37.3	57.8	16.6	17.7
72	TORSIONAL RESPONSE	(From	Simiu & S	Scanlan,	1986)	
73	- • • • • •	·			,	
74	Dist from Elast Cent	m			29.0	29.0
75 76	Dim Vel. Vh/(nL)	M			50.8	50.8
77	Peak Factor, Torsion				3.99	3.99
78	Peak Accn	m/s^2			0.0597	0.0680
79	Peak Accn	mil-g			6.08	6.93
80	TORSTONAL MOMENT				: = = = = = = = = = = = = = = = = = = =	=======
82						
83	Torsional Moment	MN m			64.5	129.5
84 85		======= (דער]וו	ding Tors	ion)	ی پیچ کر کے کہ جاتا ہے	:
86	VECOLUMI RCOUDINITON	(BACIU	aing tors			
87	Resul Accn (0.9*SRSS)	mil-g	36.1	56.2	16.9	18.7
88	ر عنه سه هي سه دي هي اين هي هي هي هي هي من بنه جي خلي اين اين اين اين اين اين اين اين اين اي	= == == == == == == == == == == == == =	===========	*======		=======

.

C3

APPENDIX D: BACKGROUND TO STRENGTH AND SERVICEABILITY CONDITIONS WHICH APPEAR IN DZ 4203

This Appendix discusses the derivation of strength limit state and serviceability conditions which have been adopted in the draft New Zealand Standard 2/DZ 4203, General Structural Design and Design Loadings for Buildings, dated 14 March 1989.

Strength Limit State

The dynamic analysis procedure given in Section 4.4 of 2/DZ 4203 will only give design loads that are greater than the simpler static analysis procedure if the combined loading effect of the dynamically derived along-wind and across-wind moments are greater than the statically derived along-wind moment. With reference to Table D1, it can be seen that this result, in the main, occurs for buildings that have both:

- (a) a ratio of height divided by the square-root-of-plan-area greater than 4, i.e. $h/\sqrt{A} > 4$;
- (b) a first mode period of vibration greater than 5 seconds.

The limiting values for the slenderness ratio and fundamental period have been changed from 4 to 3.3 and 5 to 3 respectively in 2/DZ 4203 so as to err on the conservative side. This appears consistent with the usual definition of a wind sensitive building, expressed in qualitative terms as either being very tall (more than 80 m tall) or

very slender (height to minimum plan dimension ratio greater than 5).

The criterion $h/\sqrt{A} > 3.3$ also appears in NBCC 1985 where it is used to identify buildings which are likely to experience significant acrosswind accelerations. This is an important finding because it suggests that the dynamic analysis procedure will be, in the main, applied to buildings that have large side , i.e. across-wind, forces acting on them. The static analysis procedure given in 2/DZ 4203 makes no provision for wind loads other than those caused by drag, i.e. alongwind forces.

Serviceability Considerations

A comparison of estimates of peak resultant accelerations obtained from wind tunnel model studies of four New Zealand tall buildings, ranging in height from 121 to 154 m, is presented in Figure D1. These buildings were tested in Central Laboratories' boundary layer wind tunnel using a three-component, high frequency, force balance which is capable of providing information on the loads associated with the fundamental sway modes. Estimates of the wind induced responses are made analytically once the forces are determined. The influence of other buildings were included by modelling all nearby buildings and prominent topographic features within a full scale radius of up to 300 m of the study building.

· · ·

·

.

•

• >

.

. .

•

TABLE D1 - PLEASE FOLD OUT

Simiu CAARC NBCC Examp Build Examp Å B C D E F G H I J K L M N O P
BUILDING INPUT PARAMETERS
Height, h m 200.0 133.9 133.0 154.0 143.6 126.6 121.0 118.7 109.6 100.0 93.8 90.2 69.9 53.0 52.0 37.0 37.0 28.3 14.0 1 Width, b (Equiv) m 35.0 45.7 30.5 40.4 57.6 42.2 42.1 22.8 44.2 48.0 52.8 34.1 35.0 21.7 22.6 30.8 29.5 44.0 71.1 Depth, d (Equiv) m 35.0 30.5 30.5 38.1 37.0 35.4 35.0 22.8 23.0 32.0 19.4 34.1 28.0 11.0 11.1 29.7 26.4 19.4 35.0 Area, A (Actual) m ² 2 1225 1394 930 1430 1220 1200 1140 520 1017 1536 1024 1163 980 240 250 915 780 854 1380 Building Density kg/m ⁻³ 200 160 176 164 286 256 257 287 224 237 227 171 210 340 288 237 283 246 215 Matural Freq, Along Hz 0.175 0.200 0.200 0.190 0.218 0.229 0.346 0.273 0.320 0.278 0.391 0.297 0.432 0.370 0.455 0.500 0.667 0.661 1.429 0
CALCULATED NEAR WIND SPEED AT TOP OF BUILDING E/S
GUST FACTOR
2.34 2.30 2.36 2.26 2.24 2.33 2.29 2.38 2.35 2.41 2.38 2.64 2.55 2.75 2.72 2.82 2.79 2.81 2.84
ALONG WIND PEAK BASE NOHENTS IN M FROM 2/DZ4203
Dynamic Method 2005 2106 1422 1207 1439 807 709 381 603 543 504 328 177 61 60 38 36 28 8.3 Static Method 2093 2272 1500 1365 1665 919 829 430 700 622 591 350 203 68 67 43 41 33 10 Dynamic/Static 0.96 0.93 0.95 0.88 0.86 0.88 0.85 0.89 0.86 0.87 0.85 0.94 0.87 0.90 0.89 0.88 0.87 0.85 0.80 (
ACROSS WIND PEAK BASE NOMENT AN MI
From 2/DZ4203 3740 1836 2659 926 515 454 313 420 178 218 109 294 72 21 17 16.0 13.7 5.2 1.4 From NBCC 2160 1413 1484 531 485 293 161 201 118 102 45 118 21 16 11 3.1 2.2 1.0 0.1
RESULTANT PEAK BASE MOMENT: 0.8*(SRSS) HI =
From 2/DZ4203 Homents 3740 2235 2659 1217 1439 807 709 453 603 543 504 352 177 61 60 38 36 28 8 Qsing NBCC Across Homent 2358 2106 1644 1207 1439 807 709 381 603 543 504 352 177 61 60 38 36 28 8 2/DZ4203 Resultant)/Static 1.79 0.98 1.77 0.89 0.86 0.85 1.05 0.86 0.87 0.85 1.01 0.87 0.90 0.88 0.67 0.85 0.80 1.01 0.87 0.90 0.88 0.87 0.85 0.80 1.01 0.87 0.90 0.88 0.87 0.85 0.80 1.01 0.87 0.90 0.89 0.88 0.87 0.85 0.80 1.01 0.87 0.90 0.88 0.87 0.80 1.00 0.85 0.80 1.01 0.89 0.88 0.87 0.80 0.80 0.80 0.80 0.80

TABLE D1

The comparison is for the peak resultant horizontal acceleration for the centre of the top level of the building. With reference to Figure El, the accelerations are given as normalised root mean square (rms) values and are plotted against the hourly mean wind speed V(h) at the top of the building, normalised with respect to structure frequency and square root of the planform area. The corresponding peak resultant accelerations become:

a (m/s²) = g a_r f²
$$\frac{\rho_a}{\rho_b} \sqrt{\frac{A}{\xi}}$$
 (D1)

where g = peak factor = $\sqrt{2} \ln (3600 \text{ f})$

 $a_{r} = \text{the normalised rms acceleration}$ A = planform area (m²) f = fundamental frequency (Hz) $\xi = \text{damping (fraction of critical)}$ $\rho_{a} = \text{air density} = 1.25 \text{ kg/m}^{3}$ $\rho_{b} = \text{average building density (kg/m³)}$

The normalising procedure adopted is the same as used by Loh and Isyumov (1985) in a study of across- and along-wind building motion.

The data points plotted in Figure D1 represent resultant rms accelerations for 1, 5, 10 and 50 year return period winds for each building. The trend shown suggests a power law relation between wind speed and acceleration level of the form:

$$a_r = KV_r^X$$
 where $V_r = \frac{\overline{V}(h)}{\sqrt{A} f}$ (D2)

A linear regression analysis performed on each building dataset yielded values of 0.007 to 0.011 for K, and 2.8 to 3.3 for x. Simplification of equation (D1) is aided if the exponent x, in equation (D2), is a whole number. By forcing x to be 3, K takes a value of 0.01. With reference to Figure D1, this empirical relation appears to approximate the experimental data extremely well.

Figure D1: Comparisons of Resultant Horizontal Accelerations for Different Return Periods

To further simplify equation (D1), the following assumptions have been made:

- (1) Most high rise buildings in New Zealand have a fundamental frequency in the range of 0.2 to 0.4 Hz, suggesting that an appropriate value for g is 3.75.
- (2) It is not common practice to deliberately add to the damping inherent in a structure. The suggested critical damping levels for serviceability amplitudes for both steel and reinforced or prestressed concrete structures lie between 0.005 and 0.01. The upper value of 0.01 has been selected because it is commonly used in serviceability calculations.
- (3) Substitution of the following expression relating the frequency of the first mode of vibration to building height:

$$f(Hz) = 7.6 h^{-0.71}$$
 (D3)

Equation (D1) therefore simplifies to:

$$a = 0.06 \overline{V}(h)^3 h^{0.7}/m$$
 (D4)

where $\overline{V}(h)$ = mean hourly wind speed at the top of the building (m/s)

m = mass per unit length over the top one third of the building (kg/m)

BUILDING RESEARCH ASSOCIATION OF NEW ZEALAND INC. HEAD OFFICE AND LIBRARY, MOONSHINE ROAD, JUDGEFORD.

The Building Research Association of New Zealand is an industry-backed, independent research and testing organisation set up to acquire, apply and distribute knowledge about building which will benefit the industry and through it the community at large.

ISSN 0113 - 3675