

TEST REPORT

DI15868-01

THERMAL TESTING OF GLASS WOOL BLANKET WITH ALUMINIUM FOIL R1.3

CLIENT

Hebei United Energy Tech Co. Ltd B-510 Wanda Plaza Guangyang District Langfang City 065000 China

All tests and procedures reported herein, unless indicated, have been performed in accordance with the laboratory's scope of accreditation

REPORT NUMBER:

ISSUE DATE:

PAGE:

DI15868-01

11 March 2022

1 of 10

TO WHOM IT MAY CONCERN

Both NATA (National Association of Testing Authorities, Australia) and IANZ (International Accreditation New Zealand) are signatories to the ILAC Mutual Recognition Arrangement. Under the terms of this arrangement, each signatory:

- recognises within its scope of recognition of this Arrangement the accreditation of an organisation by other signatories as being equivalent to an accreditation by its own organisation,
- (ii) accepts, for its own purposes, endorsed* certificates or reports issued by organisations accredited by other signatories on the same basis as it accepts endorsed* certificates or reports issued by its own accredited organisations,
- (iii) recommends and promotes the acceptance by users in its economy of endorsed* certificates and reports,
 - * The word "endorsed" means a certificate or report bearing an Arrangement signatory's accreditation symbol (or mark) preferably combined with the ILAC-MRA Mark.

Signed:

Jennifer Evans NATA CEO

Date: 24 March 2014

Dr Llewellyn Richards IANZ CEO

Date: 24th March 2014

PDANZ

REPORT NUMBER:

ISSUE DATE:

PAGE:

SIGNATORIES

Author

Sheng-Huei Huang Senior Technician IANZ Approved Signatory

Reviewer

Roger Stanford Senior Technician IANZ Approved Signatory

DOCUMENT REVISION STATUS

ISSUE NO.	DATE ISSUED	DESCRIPTION	
01	11/03/2022	Initial Issue	

1. TEST SPONSOR

Hebei United Energy Tech Co. Ltd B-510 Wanda Plaza, Guangyang District, Langfang City 065000, China

2. LIMITATION

The results reported here relate only to the item/s tested.

3. TERMS AND CONDITIONS

This report is issued in accordance with the Terms and Conditions as detailed and agreed in the BRANZ Services Agreement for this work.

4. TEST SAMPLES

The specimens were supplied by the client and consisted of 10 pieces of yellow glasswool insulation segment. The nominal thickness of the product is $0.055 \, \text{m}$ (d_N). The dimensions of the samples were approximately $600 \, \text{x} \, 600 \, \text{mm}$.

Table 1: Sample identification and traceability information

BRANZ Sample No.	Client Reference	Traceability Information
D6566A		
D6566B		
D6566C		
D6566D		
D6566E		
D6566F	-	-
D6566G		
D6566H		
D6566I		
D6566J		

5. TEST EQUIPMENT

All tests reported have been undertaken at BRANZ Ltd laboratories located at Judgeford, unless stated otherwise. The ASTM C518 compliant test equipment used was a LaserComp FOX600 heat flow meter and Wintherm software. The specimen for testing is placed horizontally in the apparatus, with upwards heat flow. The hot and cold plates each have a 250 mm x 250 mm heat flux transducer embedded in their surface. The edges of the specimen are insulated from the room ambient temperature.

Table 2: Test condition set-points

Nominal Upper Plate Temperature	10.0	°C
Nominal Lower Plate Temperature	36.0	°C
Nominal Difference in Temperature	26.0	K
Nominal Mean Temperature	23.0	°C

6. PROCEDURE

The test was performed in accordance with AS/NZS 4859.1. The thickness was measured to the requirements of ASTM C167 and AS/NZS 4859.1 Appendix B. The specimens were tested at the lesser of nominal thickness and actual measured thickness, to the requirements of ASTM C518.

7. CONDITIONING

The sample segments were conditioned for at least 24 hours at 23 ± 3 °C, prior to the thermal performance measurements. The thickness and the weight of the specimens were recorded both before and after conditioning. Only the relevant results are included in this test report.

8. UNCERTAINTY

The estimated overall uncertainty of measurement is 2.0%.

9. RESULTS

Table 3: Measured test temperature

Temperature Difference	26.0	± 0.1	K
Mean Test Temperature	23.0	± 0.1	°C

Table 4: Measured results for the test specimens

Calibration check	07/03/22 SR13					
BRANZ reference		D6566A	D6566B	D6566C	D6566D	D6566E
Sample weight	gram	243	244	244	241	259
'grams per sq. metre'	g/m²	671.4	684.8	659.0	672.1	712.4
Test date		10/03/22	10/03/22	10/03/22	10/03/22	10/03/22
Measured thickness	mm	55.5	56.1	55.8	55.1	56.4
Test thickness	mm	55.0	55.0	55.0	55.0	55.0
Density	kg/m³	12.2	12.5	12.0	12.2	13.0
Heat-flux	W/m²	19.28	19.11	19.51	18.77	18.71
Thermal resistance	m ² K/W	1.35	1.36	1.33	1.39	1.39
Thermal conductivity	W/mK	0.0408	0.0404	0.0412	0.0397	0.0396
Difference between heat flux transducers	%	0.2	0.1	0.2	1.1	0.2

^{*} Thermal conductance can be calculated by dividing the thermal conductivity by the thickness of the specimen

^{*} Average temperature gradient in the specimen during test can be calculated by dividing the temperature difference by the thickness of the specimen

^{*} The minimum duration of the measurement portion of the test once steady state (0.2% / 12 mins) is achieved is 6 minutes

Table 4: Continued from previous page

Calibration check	07/03/22 SR13					
BRANZ reference		D6566F	D6566G	D6566H	D6566I	D6566J
Sample weight	gram	231	254	257	237	251
'grams per sq. metre'	g/m²	652.4	717.8	714.5	654.9	701.8
Test date		11/03/22	11/03/22	11/03/22	11/03/22	11/03/22
Measured thickness	mm	55.7	58.0	59.3	59.2	59.7
Test thickness	mm	55.0	55.0	55.0	55.0	55.0
Density	kg/m³	11.9	13.1	13.0	11.9	12.8
Heat-flux	W/m²	19.39	19.32	19.17	19.57	19.18
Thermal resistance	m ² K/W	1.34	1.35	1.36	1.33	1.36
Thermal conductivity	W/mK	0.0410	0.0408	0.0405	0.0414	0.0406
Difference between heat flux transducers	%	0.7	0.7	0.4	0.2	0.7

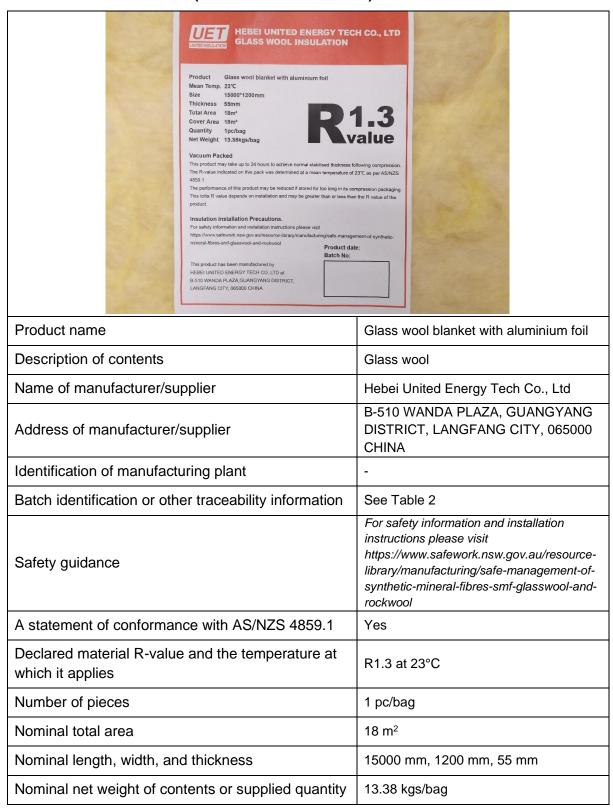
^{*} Thermal conductance can be calculated by dividing the thermal conductivity by the thickness of the specimen

^{*} Average temperature gradient in the specimen during test can be calculated by dividing the temperature difference by the thickness of the specimen

^{*} The minimum duration of the measurement portion of the test once steady state (0.2% / 12 mins) is achieved is 6 minutes

10. REFERENCES

AS/NZS 4859.1	Thermal insulation materials for buildings – Part 1: General criteria and technical provisions
	Standards Australia, Sydney, Standards New Zealand, Wellington, 2018.
AS/NZS 4859.2	Thermal insulation materials for buildings – Part 2: Design.
	Standards Australia, Sydney, Standards New Zealand, Wellington, 2018.
ASTM C167	Standard Test Methods for Thickness and Density of Blanket or Batt Thermal Insulations.
	American Society for Testing and Materials, Philadelphia, PA, 2018.
ASTM C518	Standard Test Method for Steady-State Heat Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. American Society for Testing and Materials, Philadelphia, PA, 2017.


branz.nz | 1222 Moonshine Rd, RD1, Porirua 5381, Private Bag 50 908, Porirua 5240, New Zealand | Phone +64 4237 1170 | branz@branz.co.nz

PAGE: **8 of 10**

APPENDIX

(A) PRODUCT LABEL DETAILS

Table 5: Label information (AS/NZS 4859.1 Table 3.1)

(B) STATISTICAL CALCULATION OF R_{50/90}

The statistical analysis of $R_{50/90}$ is calculated in accordance with AS/NZS 4859.1 Clause 2.3.3.5.

The declared R-value and declared thermal conductivity shall be derived from the statistically adjusted mean values $\lambda_{50/90}$ and $R_{50/90}$, representing a 50% fractile with 90% confidence, and a one-sided statistical tolerance interval, and which shall be based on thermal measurements on at least 10 individual specimens. $\lambda_{50/90}$ and $R_{50/90}$ shall be calculated using the following equations:

$$R_{50/90} = R_{mean} - k_2 \cdot s$$

$$\lambda_{50/90} = \lambda_{mean} + k_2 \cdot s$$

where

 k_2 = coefficient used when the standard deviation is estimated for one-sided tolerance interval

s =sample standard deviation for the 10 or more measured values used to determine the declared value

Note 1: for the particular case of n = 10, the value of k_2 in Table C.1, Annex C, ISO 10456:2007 is 0.44.

Note 2: if any sample < nominal thickness then λ_{mean} = mean of the adjusted λ values

Table 7: Summary results from statistical calculation at tested temperature of 23 °C

R _{mean}	1.36	m²K/W
λ_{mean}	0.0406	W/mK
Std. dev. of 10 test samples	1.5	%
R _{50/90}	1.35	m²K/W
λ _{50/90}	0.0409	W/mK